跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君諺
研究生(外文):Lin, Jiun-Yann
論文名稱:駕駛輔助之超車車輛偵測
論文名稱(外文):Overtaking vehicle detection and localization for driver assistance
指導教授:黃仲陵黃仲陵引用關係林嘉文林嘉文引用關係張意政
指導教授(外文):Huang, Chung-LinLin, Chia-WenChang, I-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:60
中文關鍵詞:車輪偵測超車偵測
外文關鍵詞:Wheel DetectionOvertaking Vehicle Detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
傳統的車輛偵測系統,僅使用車尾偵測器來偵測行車前方的車輛,但針對駕駛輔助的需求,該系統無法對鄰近的超車車輛進行偵測,超車車輛有變換車道等發生碰撞的可能,所以我們提出超車車輛的偵測系統。
將車載攝影機行駛於道路所拍攝的影像作為輸入,使用車尾偵測器和車輪偵測器,來偵測實際駕駛環境中攝影機車輛的前方車輛和兩側道路的超車車輛,超車車輛的外觀變化非常急遽,不同的位置和角度,讓車輛的側面外觀變化複雜,所以我們選擇了外觀變化小的車輪部位來建立鑑別性良好的偵測器,達到超車車輛的完整偵測結果。
在影像上計算MB-LBP特徵,再使用AdaBoost所訓練的車尾和車輪這兩種偵測器進行掃描,有別於一般偵測物體的方式,除了變化搜尋的尺度,也建立了三種長寬比例的車輪偵測器,以克服在實際的行駛狀況下,畫面中不同位置和角度的車輛側面有不同的輪胎長寬比例,使用串聯分類器有助於提高偵測速度和選出具有鑑別性的特徵來提高偵測率,車輪偵測器的偵測率達0.96,車尾偵測器的偵測率達0.92。
一般車輪偵測只使用在靜態車輛的側面部位定位之用,從實驗結果能夠看出,將其應用到行車環境後依舊有良好可靠的偵測效果,最後利用偵測到的車尾和車輪位置來在畫面上標示出車輛的所在位置。
In this paper, we proposed an effective overtaking vehicle detection system. Using image from car-mounted camera as input, detect vehicle’s rear-view and side-view on actual driving scene to achieve overtaking vehicle detection. First, compute MB-LBP feature of image, then use cascade classifier as a detector trained by AdaBoost algorithm. Differing from the traditional detection approach, a detector using 3 different aspect ratios and finding the varying scales is established so as to overcome the fact that in real driving situations, the aspect ratio of the tire appearing in the image keeps varying. Using cascade classifier helps enhance the detection speed and keep the discriminative features so as to enhance the detection rate. Finally, both the information of the rear-view and the wheel of a vehicle are used to mark the position of it in the image.
The performance of wheel detector is demonstrated with the precision rate as 0.91 and recall rate as 0.96. After wheel detection, the wheel matching is proposed which can be further applied for the overtaking vehicle localization. We achieve good detection results with two detectors.

第一章 緒論 3
1.1 研究動機 3
1.2 相關研究 5
1.3 系統流程 6
1.4 文章結構 8
第二章 使用MB-LBP提取特徵和訓練資料集 9
2.1 原始的局部二值模式 9
2.2 區塊多尺度局部二值模式 10
2.3 車輪偵測器的訓練樣本 12
2.4 車尾偵測器的訓練樣本 14
2.5 特徵提取 15
第三章 基於串聯分類器的車尾和車輪偵測器 18
3.1 AdaBoost 訓練演算法 18
3.2 分類器的串聯架構 20
3.3 偵測結果的掃描和統合 24
第四章 車輪配對和車輛定位 26
4.1 消失點 26
4.2 車輪的配對 27
4.3 前後輪分類器的訓練樣本 29
4.4 描繪車輛位置 30
4.5 切入車輛警示 32
第五章 實驗結果 33
5.1 實驗設備 33
5.2 車輪偵測 33
5.3 車尾偵測 41
5.4 車輪配對和車輛定位 44
5.5 切入車輪警示 47
第六章 結論 50
參考資料 51
附件一、CVGIP研討會投稿論文 53
[1] Zehang Sun, George Bebis, Ronald Miller, “On-Road Vehicle Detection A Review”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 28, no. 5, pp.694-711, 2006.

[2] Chih-Ming Fu, Chung-Lin Huang, and Yi-Sheng Chen, “Vision-Based Preceding Vehicle Detection and Tracking”, The 18th International Conference on Pattern Recognition, vol. 2, pp.1070-1073, 2006.

[3] Sayanan Sivaraman, Mohan Manubhai Trivedi, “A General Active-Learning Framework for On-Road Vehicle Recognition and Tracking”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 11, no. 2, 2010.

[4] Yan Zhang, Stephen J. Kiselewich, William A. Bauson, and Riad Hammoud, “Robust Moving Object Detection at Distance in the Visible Spectrum and Beyond Using A Moving Camera”, Conference on Computer Vision and Pattern Recognition Workshop , pp.131-138, 2006.

[5] Fernando Garcia, Pietro Cerri, Alberto Broggi, “Data fusion for overtaking vehicle detection based on radar and optical flow”, 2012 IEEE Intelligent Vehicles Symposium , pp.494-499, 2012.

[6] Wen-Chung Chang, Chih-Wei Cho,“Real-Time Side Vehicle Tracking Using Parts-Based Boosting”, IEEE International Conference on Systems, Man and Cybernetics , pp.3370-3375, 2008.

[7] Sayanan Sivaraman, Mohan M. Trivedi “Real-Time Vehicle Detection Using Parts at Intersections”, 15th International IEEE Conference on Intelligent Transportation Systems , pp.1519-1524, 2012.

[8] Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, Stan Z. Li, “Learning Multi-scale Block Local Binary Patterns for Face Recognition”, Advances in Biometrics Lecture Notes in Computer Science , LNCS 4642, pp. 828–837, 2007.

[9] P Viola, M Jones, “Robust real-time object detection”, International Journal of Computer Vision, Vol. 57, Issue. 2, pp. 137-154,2004.

[10] Dorin Comaniciu, P Meer, “Mean shift: A robust approach toward feature space analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 24, no. 5, pp.603-619, 2002.

[11] Hui Kong, Audibert, Jean-Yves Audibert, Jean Ponce, “Vanishing point detection for road detection”, IEEE Conference on Computer Vision and Pattern Recognition , pp.96-103, 2009.

[12] Yanpeng Cao, Alasdair Renfrew, Peter Cook, “Vehicle motion analysis based on a monocular vision system”, Road Transport Information and Control - RTIC 2008 and ITS United Kingdom Members' Conference, IET, pp.1-6, 2008.

[13] Anselm Haselhoff, Anton Kummert , “A vehicle detection system based on Haar and Triangle features”, IEEE Intelligent Vehicles Symposium, pp.261-266, 2009.

[14] Wen-Chung Chang, Chih-Wei Cho, “Online Boosting for Vehicle Detection”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no.3, pp.892-902, 2010.

[15] Sayanan Sivaraman, Mohan Manubhai Trivedi, “Active learning based robust monocular vehicle detection for on-road safety systems”, IEEE Intelligent Vehicles Symposium, pp.399-404, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top