(3.236.6.6) 您好！臺灣時間：2021/04/22 19:31

### 詳目顯示:::

:

• 被引用:0
• 點閱:162
• 評分:
• 下載:24
• 書目收藏:0
 為了在非線性不確定系統下解決多目標H2/H infinity模糊追蹤控制問題，本篇論文中提出一個多目標模糊控制設計使在非線性不確定系統下能夠保證H2和H infinity的軌跡追蹤效能可以同時滿足。首先利用T-S fuzzy model來使線性系統近似非線性不確定系統，接著基於T-S fuzzy model和模糊控制器所組成的擴充矩陣，多目標H2/H infinity模糊追蹤控制問題可以被公式化成一個多目標問題來同時最小化非線性模糊問題的H2追蹤誤差和H infinity擾動抑制程度。因為直接解多目標問題不容易，所以提出一個間接的方法來解決多目標控制設計問題，即假設H2追蹤誤差和H infinity擾動抑制程度有其上界，然後藉由盡量降低這兩個上界達到同時最小化H2和H infinity，讓多目標問題轉變成最小化帶有三個線性矩陣不等式限制條件的多目標控制設計問題。接著藉由MATLAB的LMI toolbox使用結合了線性矩陣不等式的多目標演化演算法從多目標問題得出的一組Pareto最佳化解讓使用者可以根據使用需要來挑選。另外，為了與本篇論文提出的多目標控制設計方法做比較，也展示用weighted sum 方法解決多目標H2/H infinity模糊追蹤控制設計問題，同時在本篇論文中也簡述了演化演算法的設計流程。最後，給出一個二連桿機器手臂的例子來說明設計流程及證明帶有線性矩陣不等式約束的多目標演化演算法在非線性不確定系統下對H2/H infinity模糊追蹤控制問題的表現。
 In this study,in order to solve multiobjective H2/H infinity fuzzy tracking control problem in nonlinear uncertain system, a multiobjective fuzzy control design method is introduced for nonlinear uncertain systems to guarantee optimal H2 and H infinity reference tracking performance simultaneously. First, the Takagi and Sugeno (T-S) fuzzy model is used to represent the nonlinear uncertain system. Then, based on T-S fuzzy model and fuzzy controller, multiobjective H2/H infinity fuzzy tracking control problem is formulated as a multiobjective problem (MOP) to minimize the H2 tracking error and H infinity disturbance attenuation level for nonlinear fuzzy systems at the same time. Since it is not easy to solve this MOP directly, an indirect method is proposed to solve this MOP for multiobjective H2/H infinity fuzzy tracking control design, which is assuming that H2 tracking error and H infinity disturbance attenuation level have the upper bounds, and based on minimizing two upper bounds, the multiobjective problem is transformed to minimizing the multiobjective control design problem under the constraint of three linear matrix inequalities (LMIs). Then, a LMI-based multiobjective evolution algorithm (LMI-based MOEA) which used the LMI toolbox in MATLAB is developed to efficiently solve the set of Pareto optimal solutions for the MOP, from which designer can select one design according to his own preference. Further, the multiobjective H2/H infinity fuzzy control design problem based on the weighted sum method is also solved for comparison, and we also introduce the evolution algorithm in this paper.Finally, a numerical simulation is given to illustrate the design procedure and to confirm the performance of the proposed multiobjective H2/H infinity fuzzy tracking control for nonlinear uncertain system.
 摘 要................iAbstract...........iii誌謝..................vContent.............viList of Figures....viiList of tables....viii1. Introduction.....12. Problem Formulation...73. Multiobjective H2/H infinity Fuzzy Tracking Control Design Problem Formulation Problem Formulation...124. LMI-based MOEA Approach for Multiobjective H2/H infinity Fuzzy Tracking Control Design...205. Simulation Example...276. Conclusion...35Appendix...36REFERENCES...39
 1. H.K. Khalil, Nonlinear systems. Englewood Cliffs, NJ: Prentice-Hall, 1996.2. J.J.E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, N.J.: Prentice-Hall, 1991.3. B.S. Chen, C.H. Lee, and Y.C. Chang, "H infinity tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach." IEEE Trans. Fuzzy Syst., vol. 4, No.1, pp. 32-43, Feb. 1996.4. C.S. Tseng, B.S. Chen, and H.J. Uang, "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model." IEEE Trans. Fuzzy Syst., vol. 9, No.3, pp. 381-392 , 2001.5. B.S. Chen, H.J. Uang, and C.S. Tseng, "Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach". IEEE Trans. Fuzzy Syst. vol. 6, No.4, pp. 538-552, Nov. 1998.6. W.J. Wang and H.R. Lin, "Fuzzy control design for the trajectory tracking on uncertain nonlinear systems." IEEE Trans. Fuzzy Syst. vol. 7, No.1, pp. 53-62, Feb. 1999.7. W.Y. Wang, M.L. Chen, C.C. Hsu and T.T. Lee, " H infinity tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach." IEEE Trans. Fuzzy Syst. Man, Cybern., B, Cybern. vol. 32, No.4, pp. 483-492,Aug. 2002.8. W.Y. Wang, M.L. Chan, T.T. Lee, C.H. Liu, "Adaptive fuzzy control for strict-feedback canonical nonlinear systems with H infinity tracking performance." IEEE Trans. Fuzzy Syst. Man, Cybern., B, Cybern. vol. 30, No.6, pp. 878-885, Dec. 2000.9. S.F. Su, J.C. Chang, and S.S. Chen, "The Study on Direct Adaptive Fuzzy Controllers." Int. J. Fuzzy Syst. vol. 8, No.3, pp. 150-159, 2006.10. Y.C. Hsueh, S.F. Su, C.W. Tao and C.C. Hsiao, "Robust L2-Gain Compensative Control for Direct-Adaptive Fuzzy-Control-System Design." IEEE Trans. Fuzzy Syst., vol. 18, No.4, pp. 661-673, 2010.11. Y.T. Chang and B.C Chen, "A Fuzzy Approach for Robust Reference Tracking Control Design of Nonlinear Distributed Parameter Time-Delayed Systems and Its Application." IEEE Trans. Fuzzy Syst., vol. 18, No.6, pp. 1041-1057, 2010.12. C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont, Evolutionary algorithms for solving multi-objective problems. New York: Kluwer Academic, 2002.13. K. Deb, Multi-objective optimization using evolutionary algorithms, New York: Cambridge Univ. Press, 2004.14. K. Miettinen, Nonlinear multiobjective optimization, Norwell , MA: Kluwer, 1999.15. H. Li and Q. Zhang, "Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II." IEEE Trans. Evol. Comput., vol. 13, No.2, pp. 284-302, Apr. 2009.16. K. Deb, et al., "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE Trans. Evol. Comput., vol. 6, No.2, pp. 182-197, Apr. 2002.17. T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control." IEEE Trans. Fuzzy Syst. Man, Cybern., vol. 15, pp. 116-132, Jan. 1985.18. H.O. Wang, K. Tanaka, and M.F. Griffin, "An approach to fuzzy control of nonlinear systems: stability and design issues." IEEE Trans. Fuzzy Syst., vol. 4, pp. 14-23, Feb. 1996.19. K. Tanaka, T. Ikeda, and H.O. Wang, "Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs." IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, May 1998.20. B.S. Chen, C.S. Tseng, and H.T. Uang, "Robustness design of nonlinear dynamic systems via fuzzy linear control." IEEE Trans. Fuzzy Syst., vol. 7, pp. 571-585, Oct. 1999.21. B.S. Chen, C.S. Tseng, and H.T. Uang, "Mixed H2/H infinity fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach." IEEE Trans. Fuzzy Syst., vol. 8, No.3, pp. 249-265, May 2000.22. C.S. Tseng and B.S. Chen, "H infinity decentralized fuzzy model reference tracking control design for nonlinear interconnected systems." IEEE Trans. Fuzzy Syst., vol. 9, No.6, pp. 795-809, Dec. 2001.23. E. Kim, M. Park, S. Ji and M. Park, "A new approach to fuzzy modeling." IEEE Trans. Fuzzy Syst., vol. 5, pp. 328-337, Aug. 1997.24. S. Boyd and L. Vandenberghe, Convex optimization, New York: Cambridge Univ. Press, 2004.25. S. Boyd, et al., Linear matrix inequalities in system and control theory. Philadelphia. PA: SIAM, 1994.26. C. Lin, Q.G. Wang, T.H. Lee, Y. He, B. Chen, "Observer-based H infinity fuzzy control design for T–S fuzzy systems with state delays." Automatica, vol. 44, No.3, pp. 868-874, Mar. 2008.27. F.H. Hsiao, J.D. Hwang, C.W. Chen and Z.R. Tsai, "Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control." IEEE Trans. Fuzzy Systems, vol. 13, No.1, pp. 152-163, 2005.28. F.H. Hsiao, S.D. Xu, C.Y. Lin and Z.R. Tsai, "Robust design of fuzzy control for nonlinear multiple time-delay large-scale systems via neural-network-based approach." IEEE Trans. Syst. Man. Cybern. B. vol. 38, No.1, pp. 244-251, 2008.29. T.S. Li, S.C. Tong, G. Feng, "A novel robust adaptive-fuzzy-tracking control for a class of nonlinearmulti-input/multi-output systems." IEEE Trans. Fuzzy Systems, vol. 18, No.1, pp. 150-160, 2010.30. W. Zhang and B.S. Chen, "State feedback H infinity control for a class of nonlinear stochastic systems." SIAM J. Control Optimization, vol. 44, No.6, pp. 1973-1991, 2006.31. S.K. Nguang and P. Shi, "H infinity fuzzy output feedback control design for nonlinear systems: an LMI approach." IEEE trans. Fuzzy Systems, vol. 11, No.3, pp. 331-340, 2003.32. W. Assawinchaichote and S.K. Nguang "H infinity fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: an LMI approach." IEEE Trans. Syst. Man. Cybern. B. vol. 34, No.1, pp. 579-588, 2004.33. W. Paszke, K. Galkowski, E. Rogers and J. Lam, "H2 and mixed H2/H infinity stabilization and disturbance attenuation for differential linear repetitve processes." IEEE Trans. Circuits and Systems I. Rog. Papers, vol. 55, pp. 2813-2826, 2008.34. L. Zhang, B. Huang and J. Lam, "LMI synthesis of H2 and mixed H2/H infinity controllers for singular systems." IEEE Trans. Circuits and Systems II. Analog Digit. Signal Processing, vol. 50, pp. 615-626, 2003.35. B.S. Chen and W. Zhang, "stochastic H2/H infinity control with state dependent noises." IEEE Trans. Automat. Control, vol. 49, No.1, pp. 45-57, 2004.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 非線性隨機模糊系統之多目標Pareto最佳化濾波器設計 2 使用T-S模糊控制法則以穩定並具有H∞性能之時間延遲多機電力系統

 無相關期刊

 1 非線性隨機模糊系統之多目標Pareto最佳化濾波器設計 2 無線通訊系統之多目標功率追蹤控制利用柏拉圖最佳化方法 3 多種致癌的核心和特殊網路標記 4 利用系統化方法於大腸桿菌細胞族群控制裂解基因電路設計 5 非線性隨機卜瓦松擴散系統之強健最佳化規劃濾波器設計 6 透過卜瓦松過程耦合下非線性隨機耦合網路的強健同步化探討與最小耦合設計 7 非線性隨機生物啟發控制系統的時程管理方針--藉由強健性脈衝追蹤控制策略 8 尋找重要訊息路徑：於斑馬魚小腦創傷復原進程 9 藉由差異的蛋白質網路在三個人類胚胎幹細胞分化過程中探討顯著的信號通路和功能模塊以討論多巴胺神經元的發展情況 10 透過動態蛋白質交互作用網路研究斑馬魚心臟創傷恢復過程中再生機制的重要訊息路徑 11 Multiobjective H2/H∞ filter design for signal reconstruction of transmultiplexer systems 12 考慮多目標功率控制在直序展頻分碼多工通訊系統 13 輸出回授非線性H_infinity模糊適應追蹤控制 14 幾種固執及非固執約束機構系統的追蹤控制設計 15 一個轉換人體動作至具有非正交轉軸肢體之人形機器人的方法

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室