[1] 張品全, 《太陽電池》, 科學發展, 2002年1月, 349期
[2] Jack L. Stone, Physics Today, 1993.
[3]S. O. Kasap, Optoelectronics and Photonics Principles and
Practices,Chapter 6.
[4] Photovoltaic Effect. Mrsolar.com. Retrieved on 2010-12-12.
[5] Wilson, G. (2012). Research Cell Efficiency Records. CO: NREL
[6]Yang J, Banerjee A, Sugiyama S, Guha S, 26th IEEE Photovoltaic
Specialists Conference, Anaheim 1997, 563.
[7] D. L. Staebler and C. R. Wronski,“Reversible conductivity changes in
discharge-produced amorphous Si”,Appl. Phys. Lett.,31,(1977), 292.
[8]Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S,
Levi DH, Sheldon P, 17th European Photovoltaic Solar Energy
Conference 2001, 995–1000.
[9]R. A. Mickelsen, W. S. Chen, Y. R. Hsiao, and V. E. Lowe, IEEE
Trans. Electro. Dev., ED-31 , 542 (1984)
[10] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelson,
IEEE Trans Electro. Dev., 37, 428 (1990)
[11] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.
Perkins, B. To, and R. Noufi, “19.9%-efficienct ZnO/CdS/CuInGaSe2
Solar Cell with 81.2% Fill Factor,” Prog. Photovolt: Res. Appl. 16, 2008,
pp 235-239.
[12] S. Schorr, Thin Solid Films515,p5985,(2007).
[13] Muller, H. J., “Semiconductors for Solar Cells,” Artech House,
Boston, 1993.
[14] H. de Moor, A. Jäger-Waldau et al “PVNET European Roadmap for
PV R&D” PVNET Roadmap for PV Version 12/2002
[15] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.
Perkins, B. To, and R. Noufi, “19.9%-efficienct ZnO/CdS/CuInGaSe2
Solar Cell with 81.2% Fill Factor,” Prog. Photovolt: Res. Appl. 16, 2008,
pp 235-239.
[16] Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki,
H.;Takeuchi, A. Development of CZTS-based thin film solar cells. Thin
SolidFilms 2009, 517, 2455–2460.
[17] Periodic Tabla of Elements (EnvironmentalChemistry.com).
http://environmentalchemistry.com/yogi/periodic/ (accessed Feb 12,
2011).
[18] Teodor K. Todorov , Jiang Tang , Santanu Bag , Oki Gunawan ,
Tayfun Gokmen , Yu Zhu , David B. Mitzi,“Beyond 11% Effi ciency:
Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4Solar Cells” Adv.
Energy Mater. 2013, 3, 34–38
[19] Schorr, S. Structural aspects of adamantine like multinary
chalcogenides.
Thin Sold Films 2007, 515, 5985–5991.
[20]吳宗鑫, 《銅鋅錫硫薄膜太陽電池技術發展與產業價值分析》,工
業材料雜誌2012/04 304期.
[21]張瑋恩,硒化銅銦鎵太陽能電池電極層之特性分析,國立東華大
學電機工程學系,民國97年。
[22]杜誌祥,「濺鍍CIGS薄膜之機械性質研究」,《中國機械工程學
會第二十五屆全國學術研討會論文集》,彰化、台灣,民97
[23] Hong-Ming Lin (林鴻明) (2004):奈米材料合成技術2010 年3 月
15
[24]林麗娟,X 光繞射原理及應用,工業材料86 期,民國83 年2 月。[25]Quirk, M., J., Serda, Semiconductor Manufacturing Technology,
Prentice Hall, chapter 12, (2001).
[26]Donald A. Neamen著,李世鴻譯,半導體物理及元件,美商麥格
羅‧希爾國際股份有限公司,台北市,西元2006年。
[27]林泉融,製備二氧化鈦製密層以改善染料敏化太陽能電池(DSSCs)
之光電轉換效率,碩士論文,民國100年7月
[28]D.B. Johnson, L.C. Brown, “Lateral Diffusion in Ag-Se Thin-Film
Couples” J. Appl. Phys. 40 (1969) 149–152.
[29] T. Ohtani, M. Shohno,” Room temperature formation of Cu3Se2 by
solid-state reaction between α-Cu2Se and α-CuSe” J. Solid State Chem.
177, 3886–3890
[30] Xie R, Rutherford M and Peng X,” Formation of high-quality
I-III-VI semiconductor nanocrystals by tuning relative reactivity of
cationic precursors.” J. Am. Chem. Soc. 131 5691.2009.
[31] AHN, S., JUNG, S., GWAK, J., CHO, A., SHIN, K., YOON, K.,
PARK, D., CHEONG, H., AND YUN, J. H. “Determination of band
gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of
reported band gap values” Applied Physics Letters 97, 2, 021905,
2010.
[32] M. Grossberg , J. Krustok, K. Timmo, M. Altosaar,” Radiative recombination in
Cu2ZnSnSe4 monograins studied by photoluminescence
spectroscopy” Thin Solid Films 517. 2489–2492, 2009.
[33] P. M. P. Salomé, P. A. Fernandes1,2, and A. F. da Cunha, “Growth
Pressure dependence of Cu2ZnSnSe4 properties “ Phys. Status
Solidi C 7, No. 3–4, 913– 916,2010.
[34] P.M.P. Salomé , P.A. Fernandes, A.F. da Cunha,” Morphological and structural
characterization of Cu2ZnSnSe4 thin films grown by selenization of
elemental precursor layers” Thin Solid Films 517. 2531–2534, 2009.
[35] H.Matsushita, T.Maeda, A.Katsui, T.Takizawa, “Thermal
analysisand synthesis from the melts of Cu-based quaternary
compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II¼ Zn, Cd;III¼ Ga,
In;IV¼Ge, Sn;VI¼Se)”, J.Cryst. Growth 208. 416–422, 2000.
[36] I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Pishach, O. V.
Parasyuk, O. V. Marchuk, Single crystal preparation and crystal
structure of the Cu2Zn/Cd,Hg/ SnSe4 compounds, J.Alloys Compd.
340. 141–145, 2002.
[37] T. Maeda, S. Nakamura, T. Wada, “Phase stability and electronic
structure of In- free photovoltaic semiconductors,Cu2ZnSnSe4 and
Cu2ZnSnS4 by first- principle calculation”, Mater. Res.
Symp.Proc.1165, M04–03, 2009.
[38] S. Chen, X. G. Gong, A. Walsh, and S.H Wei, “Crystal and
electronic band structure of Cu2ZnSnX4 „X=S and Se photovoltaic
absorbers: First-principles insights”, Appl. Phys. Lett. 94, 041903,
2009
[39] J. Paier, R.Asahi, A.Nagoya, G.Kresse, “Cu2ZnSnS4 as a potential
photovoltaic material: ahybrid Hartree–Fock density functional theory
study”, Phys. Rev. B 79 115126-1-8, 2009.
[40] G. Zoppi1, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M.
Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of
magnetron sputtered precursors” Prog Photovoltaics: Res. Appl. 17:
315-319, 2009.
[41] G. S. Babu, Kumar Y. B. K. Kumar, P.U. Bhaskar, V. S. Raja,
“Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films
for photovoltaic applications”, J. Phys. D. Appl. Phys .41:205305,
2008.
[42] E. Mellikov, D. Meissner, T. Varema, M. Altosaar, M. Kauk,
O.Volobujeva, J. Raudoja, K.Timmo, M.Danilson, “Monograin
materials for solar cells”, Sol. Energy. Mater. Sol.Cells. 93, 65–68,
2009.
[43] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, “Single
step preparation of quaternary Cu2ZnSnSe4 thin films by RF
magnetron sputtering from binary chalcogenide targets”, J. Phys. Chem.
Solids. 68, 1908–1913, 2009.
[44] R. A.Wibowo, E. S. Lee, B. Munir, K. H. Kim, “Pulsed laser
deposition of Cu2ZnSnSe4 thin films”, Phys. Status Solidi (a)204,
3373–3379, 2007.
[45] O. Volobujeva, J.Raudoja, E. Mellikov, M.Grossberg, S. Bereznev,
R. Traksmaa, Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu
sequential films, J. Phys. Chem. Solids. 70. 567–570, 2009.
[46]Q. Guo, G. M. Ford, H. W. Hillhouse, R. Agrawal, "Sulfide
Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films
and Their Photovoltaic Performance". Nano Letters, 9 (8) (2009),
pp 3060-3065.
[47] S. Ahn, S. Jung, J.Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H.
Cheong and J. H. Yun “Determination of band gap energy (Eg) of
Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap
values” Appl. Phys. Lett. 97, 2 (2010) 021905.
[48]B. Pejova, I. Grozdanov.” Chemical Deposition and Characterization
of Cu3Se2 and CuSe Thin Films” J. Solid State Chem.158 (2001)
49−54.
[49] Solar Buster Corporation, TurnKey solution.
[50] P. Kumar and K. Singh, ”Wurtzite ZnSe quantum dots: Synthesis,
characterization and PL properties” Journal of optoelectronic and
Biomedical Materials Volume 1, Issue 1 (2009) p. 59 – 69.
[51] T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S.
Kuwabata and T. Torimoto, “Preparation and photoelectrochemical
properties of densely immobilized Cu2ZnSnS4 nanoparticle films” J.
Mater. Chem. 20 (2010) 5319–5324.
[52] Fengxia Rong, Yan Bai, Tianfeng Chen, Wenjie Zheng” Chemical
synthesis of Cu2Se nanoparticles at room temperature” Materials
Research Bulletin 47 (2012) 92–95
[53] 謝雨奇,以In2Se3 為緩衝層之CIGS 太陽電池之研究,國立中央
大學電機工程系,碩士論文,民國九十九年。