跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許恩豪
研究生(外文):En-hao Hsu
論文名稱:以低成本、簡易非真空製程技術製作太陽能電池之硒化銅鋅錫(CZTSe) 薄膜吸收層
論文名稱(外文):The synthesis of high-quality CZTSe thin-film absorber for solar cells by low-cost,convenient and non-vacuum technology
指導教授:許世昌許世昌引用關係
指導教授(外文):Shih-Chang Shei
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:70
中文關鍵詞:太陽能電池硒化銅鋅錫非真空製程
外文關鍵詞:Solar cellNon-vacuum processCZTSe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
CZTSe薄膜太陽能電池,結構類似於同為太陽能電池材料的CIGS
的結構且價格相對低廉,因此CZTSe 被喻為第三代薄膜太陽能電池
的候補技術。
本研究使用金屬粉末做為原料,在非真空的製程環境下使用熱迴
流偶合油相法合成Cu2ZnSnSe4 (CZTSe) 漿料、粉體;在反應合成溫
度相同的情況下,改變多種製程條件,例如不同反應溶劑、反應時間與硒化條件等,從中探討取得最佳合成條件、製備生成的粉末與薄膜以XRD、SEM、TEM、EDS、Raman、UV-Vis 進行特性分析,經實
驗結果指出以IPDA 作為反應溶劑,能與金屬粉末充分反應,經過反
應20 小時後,可避免二元相或三元相殘留,合成出單一Cu2ZnSnSe4
漿料(粉末)。其短時間合成中所產生的前驅物亦可透過硒化處理,獲得改善形成良好的Cu2ZnSnSe4 薄膜,可大幅縮減製作CZTSe 吸收層所需的時間。
Most of Cu2ZnSnSe4 absorber layer prepared by ink process are described as followed:
First, in the beginning of synthesized process, high boiling point chelating agent with N-H bending modes is necessary for the formation of metal complex phase, after the reactions temperature were maintained for enough time, the reactions mixture were cooled to room temperature,
acetone was added to precipitate the nanocrystal products. Then, the precipitate was centrifuged and washed with distilled water and absolute ethanol several times to remove by-products. The product was filtered off and then vacuum-dried at 80 oC in Oven, the above process of obtaining CZTSe nano powders are very complicated. At the end, the as-prepared CZTSe particles were mixed with dispersant and binder to increase viscosity, the ink for screen printing was prepared.
In this work, we report the application of the elemental
solvothermal synthesized process in favor of obtaining CZTSe nano ink,CZTSe nano inks were successfully synthesized by using metal powders under N2 atmosphere, the synthesized nano ink was printed on the substrates without additive binders and adjunct, this absorber layer deposited process is convenient than most of reported ink printing process.
摘要 ...............................................................................................................................I
ABSTRACT .................................................................................................................. II
致謝 ............................................................................................................................. III
目錄 ............................................................................................................................. IV
圖目錄 ......................................................................................................................... VI
表目錄 ......................................................................................................................... IX
第一章 緒論 ............................................................................................................... 1
1.1 前言 ............................................................................................................... 1
1.2 太陽能基本原理 ........................................................................................... 2
1.3 太陽能光譜 ................................................................................................... 3
1.4 太陽能電池效率轉換 ................................................................................... 5
1.5 太陽能電池介紹 ........................................................................................... 7
1.5.1 薄膜型太陽能電池 ................................................................................... 8
1.6 研究目標 ..................................................................................................... 11
第二章 CZTSe 介紹與文獻回顧 ............................................................................. 13
2.1 Cu2ZnSnSe4 材料特性 ............................................................................... 13
2.2 Cu2ZnSnSe4(CZTSe)粉末/薄膜製程方法 ............................................. 14
2.2.1 真空製程技術(Vacuum process) ............................................................ 15
2.2.2 非真空製程技術(Non -vacuum process) ................................................ 17
第三章 實驗步驟與分析儀器 ................................................................................. 19
3.1 實驗設計 ..................................................................................................... 19
3.2 實驗步驟 ..................................................................................................... 20
3.2.1 鈉玻璃基板清洗 ..................................................................................... 20
3.2.2 CZTSe 奈米粉末(漿料)製備 .................................................................. 20
3.2.3 CZTSe 薄膜形成 ..................................................................................... 21
3.3 量測儀器 ..................................................................................................... 23
3.3.1 X 光繞射分析(XRD) .............................................................................. 23
3.3.2 場發射掃描式電子顯微鏡 (FE-SEM) ................................................... 25
3.3.3 穿透式電子顯微鏡(TEM ) ..................................................................... 25
3.3.4 拉曼光譜儀(Raman spectra) .............................................................. 26
3.3.5 霍爾效應量測(Hall effect measurement) .......................................... 27
3.3.6 紫外光/可見光/近紅外光分光光譜(UV/Vis/NIR) ................................ 29
第四章 實驗結果與分析討論 ................................................................................. 30
4.1 反應溶劑對CZTSe 粉末生成之影響 ........................................................ 30
4.2 不同反應時間對CZTSe 粉末生成之影響 ................................................ 40
4.3 硒化熱處理 ................................................................................................. 53
第五章 結論與未來工作 ......................................................................................... 62
參考文獻 ..................................................................................................................... 64
[1] 張品全, 《太陽電池》, 科學發展, 2002年1月, 349期
[2] Jack L. Stone, Physics Today, 1993.
[3]S. O. Kasap, Optoelectronics and Photonics Principles and
Practices,Chapter 6.
[4] Photovoltaic Effect. Mrsolar.com. Retrieved on 2010-12-12.
[5] Wilson, G. (2012). Research Cell Efficiency Records. CO: NREL
[6]Yang J, Banerjee A, Sugiyama S, Guha S, 26th IEEE Photovoltaic
Specialists Conference, Anaheim 1997, 563.
[7] D. L. Staebler and C. R. Wronski,“Reversible conductivity changes in
discharge-produced amorphous Si”,Appl. Phys. Lett.,31,(1977), 292.
[8]Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S,
Levi DH, Sheldon P, 17th European Photovoltaic Solar Energy
Conference 2001, 995–1000.
[9]R. A. Mickelsen, W. S. Chen, Y. R. Hsiao, and V. E. Lowe, IEEE
Trans. Electro. Dev., ED-31 , 542 (1984)
[10] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelson,
IEEE Trans Electro. Dev., 37, 428 (1990)
[11] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.
Perkins, B. To, and R. Noufi, “19.9%-efficienct ZnO/CdS/CuInGaSe2
Solar Cell with 81.2% Fill Factor,” Prog. Photovolt: Res. Appl. 16, 2008,
pp 235-239.
[12] S. Schorr, Thin Solid Films515,p5985,(2007).
[13] Muller, H. J., “Semiconductors for Solar Cells,” Artech House,
Boston, 1993.
[14] H. de Moor, A. Jäger-Waldau et al “PVNET European Roadmap for
PV R&D” PVNET Roadmap for PV Version 12/2002
[15] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L.
Perkins, B. To, and R. Noufi, “19.9%-efficienct ZnO/CdS/CuInGaSe2
Solar Cell with 81.2% Fill Factor,” Prog. Photovolt: Res. Appl. 16, 2008,
pp 235-239.
[16] Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki,
H.;Takeuchi, A. Development of CZTS-based thin film solar cells. Thin
SolidFilms 2009, 517, 2455–2460.
[17] Periodic Tabla of Elements (EnvironmentalChemistry.com).
http://environmentalchemistry.com/yogi/periodic/ (accessed Feb 12,
2011).
[18] Teodor K. Todorov , Jiang Tang , Santanu Bag , Oki Gunawan ,
Tayfun Gokmen , Yu Zhu , David B. Mitzi,“Beyond 11% Effi ciency:
Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4Solar Cells” Adv.
Energy Mater. 2013, 3, 34–38
[19] Schorr, S. Structural aspects of adamantine like multinary
chalcogenides.
Thin Sold Films 2007, 515, 5985–5991.
[20]吳宗鑫, 《銅鋅錫硫薄膜太陽電池技術發展與產業價值分析》,工
業材料雜誌2012/04 304期.
[21]張瑋恩,硒化銅銦鎵太陽能電池電極層之特性分析,國立東華大
學電機工程學系,民國97年。
[22]杜誌祥,「濺鍍CIGS薄膜之機械性質研究」,《中國機械工程學
會第二十五屆全國學術研討會論文集》,彰化、台灣,民97
[23] Hong-Ming Lin (林鴻明) (2004):奈米材料合成技術2010 年3 月
15
[24]林麗娟,X 光繞射原理及應用,工業材料86 期,民國83 年2 月。
[25]Quirk, M., J., Serda, Semiconductor Manufacturing Technology,
Prentice Hall, chapter 12, (2001).
[26]Donald A. Neamen著,李世鴻譯,半導體物理及元件,美商麥格
羅‧希爾國際股份有限公司,台北市,西元2006年。
[27]林泉融,製備二氧化鈦製密層以改善染料敏化太陽能電池(DSSCs)
之光電轉換效率,碩士論文,民國100年7月
[28]D.B. Johnson, L.C. Brown, “Lateral Diffusion in Ag-Se Thin-Film
Couples” J. Appl. Phys. 40 (1969) 149–152.
[29] T. Ohtani, M. Shohno,” Room temperature formation of Cu3Se2 by
solid-state reaction between α-Cu2Se and α-CuSe” J. Solid State Chem.
177, 3886–3890
[30] Xie R, Rutherford M and Peng X,” Formation of high-quality
I-III-VI semiconductor nanocrystals by tuning relative reactivity of
cationic precursors.” J. Am. Chem. Soc. 131 5691.2009.
[31] AHN, S., JUNG, S., GWAK, J., CHO, A., SHIN, K., YOON, K.,
PARK, D., CHEONG, H., AND YUN, J. H. “Determination of band
gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of
reported band gap values” Applied Physics Letters 97, 2, 021905,
2010.
[32] M. Grossberg , J. Krustok, K. Timmo, M. Altosaar,” Radiative recombination in
Cu2ZnSnSe4 monograins studied by photoluminescence
spectroscopy” Thin Solid Films 517. 2489–2492, 2009.
[33] P. M. P. Salomé, P. A. Fernandes1,2, and A. F. da Cunha, “Growth
Pressure dependence of Cu2ZnSnSe4 properties “ Phys. Status
Solidi C 7, No. 3–4, 913– 916,2010.
[34] P.M.P. Salomé , P.A. Fernandes, A.F. da Cunha,” Morphological and structural
characterization of Cu2ZnSnSe4 thin films grown by selenization of
elemental precursor layers” Thin Solid Films 517. 2531–2534, 2009.
[35] H.Matsushita, T.Maeda, A.Katsui, T.Takizawa, “Thermal
analysisand synthesis from the melts of Cu-based quaternary
compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II¼ Zn, Cd;III¼ Ga,
In;IV¼Ge, Sn;VI¼Se)”, J.Cryst. Growth 208. 416–422, 2000.
[36] I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Pishach, O. V.
Parasyuk, O. V. Marchuk, Single crystal preparation and crystal
structure of the Cu2Zn/Cd,Hg/ SnSe4 compounds, J.Alloys Compd.
340. 141–145, 2002.
[37] T. Maeda, S. Nakamura, T. Wada, “Phase stability and electronic
structure of In- free photovoltaic semiconductors,Cu2ZnSnSe4 and
Cu2ZnSnS4 by first- principle calculation”, Mater. Res.
Symp.Proc.1165, M04–03, 2009.
[38] S. Chen, X. G. Gong, A. Walsh, and S.H Wei, “Crystal and
electronic band structure of Cu2ZnSnX4 „X=S and Se photovoltaic
absorbers: First-principles insights”, Appl. Phys. Lett. 94, 041903,
2009
[39] J. Paier, R.Asahi, A.Nagoya, G.Kresse, “Cu2ZnSnS4 as a potential
photovoltaic material: ahybrid Hartree–Fock density functional theory
study”, Phys. Rev. B 79 115126-1-8, 2009.
[40] G. Zoppi1, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M.
Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of
magnetron sputtered precursors” Prog Photovoltaics: Res. Appl. 17:
315-319, 2009.
[41] G. S. Babu, Kumar Y. B. K. Kumar, P.U. Bhaskar, V. S. Raja,
“Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films
for photovoltaic applications”, J. Phys. D. Appl. Phys .41:205305,
2008.
[42] E. Mellikov, D. Meissner, T. Varema, M. Altosaar, M. Kauk,
O.Volobujeva, J. Raudoja, K.Timmo, M.Danilson, “Monograin
materials for solar cells”, Sol. Energy. Mater. Sol.Cells. 93, 65–68,
2009.
[43] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, “Single
step preparation of quaternary Cu2ZnSnSe4 thin films by RF
magnetron sputtering from binary chalcogenide targets”, J. Phys. Chem.
Solids. 68, 1908–1913, 2009.
[44] R. A.Wibowo, E. S. Lee, B. Munir, K. H. Kim, “Pulsed laser
deposition of Cu2ZnSnSe4 thin films”, Phys. Status Solidi (a)204,
3373–3379, 2007.
[45] O. Volobujeva, J.Raudoja, E. Mellikov, M.Grossberg, S. Bereznev,
R. Traksmaa, Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu
sequential films, J. Phys. Chem. Solids. 70. 567–570, 2009.
[46]Q. Guo, G. M. Ford, H. W. Hillhouse, R. Agrawal, "Sulfide
Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films
and Their Photovoltaic Performance". Nano Letters, 9 (8) (2009),
pp 3060-3065.
[47] S. Ahn, S. Jung, J.Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H.
Cheong and J. H. Yun “Determination of band gap energy (Eg) of
Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap
values” Appl. Phys. Lett. 97, 2 (2010) 021905.
[48]B. Pejova, I. Grozdanov.” Chemical Deposition and Characterization
of Cu3Se2 and CuSe Thin Films” J. Solid State Chem.158 (2001)
49−54.
[49] Solar Buster Corporation, TurnKey solution.
[50] P. Kumar and K. Singh, ”Wurtzite ZnSe quantum dots: Synthesis,
characterization and PL properties” Journal of optoelectronic and
Biomedical Materials Volume 1, Issue 1 (2009) p. 59 – 69.
[51] T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S.
Kuwabata and T. Torimoto, “Preparation and photoelectrochemical
properties of densely immobilized Cu2ZnSnS4 nanoparticle films” J.
Mater. Chem. 20 (2010) 5319–5324.
[52] Fengxia Rong, Yan Bai, Tianfeng Chen, Wenjie Zheng” Chemical
synthesis of Cu2Se nanoparticles at room temperature” Materials
Research Bulletin 47 (2012) 92–95
[53] 謝雨奇,以In2Se3 為緩衝層之CIGS 太陽電池之研究,國立中央
大學電機工程系,碩士論文,民國九十九年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top