跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳威震
研究生(外文):Wei-chen Wu
論文名稱:計算保持重心的x坐標對稱梯形模糊逼近—運用平移方法
論文名稱(外文):Computing the symmetric trapezoidal approximation-preserving its x-coordinate of the centroid point of a fuzzy number by translation method
指導教授:葉啟村葉啟村引用關係
指導教授(外文):Chi-Tsuen Yeh
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:應用數學研究所碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:21
中文關鍵詞:逼近對稱梯形模糊數重心
外文關鍵詞:approximationsymmetric trapezoidalfuzzy numbercentroid point.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近來許多類型模糊數的逼近問題已經被研究過,包含三角、梯形與半梯形模糊數的逼近問題,也提出計算公式與演算法。接著針對模糊數的特性,提出了保持特定性質的逼近問題,包含保持區間,保持模糊度,保持模糊寬度的模糊數的逼近問題,在本論文中,我們提出另一個解法處理保持x 重心的逼近問題,包含對稱三角形與對稱梯形模糊數。最後提出實例具體呈現理論的結果。
Recently, we study more general approximations of fuzzy numbers which will generalize many approximations including interval, triangular, trapezoidal, semi-trapezoidal approximations. For properties of fuzzy numbers, the approximation-preserving the specific property
problem, including preserving interval, ambiguity or width, are proposed. In this paper, we propose translation method to solve approximation preserving its x-coordinate of the centroid point of a fuzzy number, including symmetric triangular and trapezoidal approximation, in
Hilbert space. In the end, numerical results show that the presented method is valid.
中文摘要i
英文摘要ii
誌  謝iii
目  錄iv
1 Preliminaries 1
1.1 The definition of fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 1
1.2 Symmetric trapezoidal approximation of a fuzzy number . . . . . . . . . . 5
2 Embedding fuzzy numbers into a Hilbert space 6
2.1 Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Embedding fuzzy numbers into a Hilbert space . . . . . . . . . . . . . . 7
3 The symmetric trapezoidal approximation-preserving its x-coordinate
of the centroid point of a fuzzy number 9
3.1 The symmetric trapezoidal approximation-preserving its x-coordinate of the
centroid point of a fuzzy number A~ with x (A~) = 0 . . . . . . . . . . . . 9
3.2 The symmetric triangular approximation-preserving its x-coordinate of the
centroid point of a fuzzy number A~ with x (A~) = 0 . . . . . . . . . . . . 13
3.3 The symmetric trapezoidal approximation-preserving its x-coordinate of the
centroid point of a fuzzy number . . . . . . . . . . . . . . . . . . . . . 14
3.4 A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reference 20
[1] K.M. Abadir and J.R. Magnus, Matrix algebra, Cambridge University Press, New York, 2005.
[2] S. Abbasbandy and B. Asady, The nearest trapezoidal fuzzy number to a fuzzy quantity, Applied
Mathematics and Computation 156(2004) 381-386.
[3] S. Abbasbandy and M. Amirfakhrian, The nearest trapezoidal form of a generalized left right
fuzzy number, International Journal of Approximate Reasoning 43(2006) 166-178.
[4] S. Abbasbandy and M. Amirfakhrian, The nearest approximation of a fuzzy quantity in parametric
form, Applied Mathematics and Computation 172(2006) 624-632.
[5] S. Abbasbandy and T. Hajjari, Weighted trapezoidal approximation preserving cores of a fuzzy
numbers, Computers and Mathematics with Applications 59 (2010) 3066-3077.
[6] T. Allahviranloo and M.A. Firozja, Note on "Trapezoidal approximation of fuzzy numbers'', Fuzzy
Sets and Systems 158(2007) 747-754.
[7] A.I. Ban, Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected
interval, Fuzzy Sets and Systems, 159(2008) 1327-1344.
[8] A.I. Ban, On the nearest parametric approximation of a fuzzy number-revisited, Fuzzy Sets and
Systems 160(2009) 3027-3047.
[9] A.I. Ban, Triangular and parametric approximations of fuzzy numbers-inadvertences and corrections,
Fuzzy Sets and Systems 160(2009) 3048-3058.
[10] A. Ban and L. Coroianu, Translation invariance and scale invariance of approximations of fuzzy
numbers, Advances in Intelligent Systems Research, 1/1(2011) 742-748.
[11] A. Ban, A. Brandas, C. Negrutiu and O. Nica, Approximations of fuzzy numbers by trapezoidal
fuzzy numbers preserving the ambiguity and value, Computers and Mathematics with Applications
61 (2011) 1379-1401.
[12] P.R. Beesack and J. Pecaric, Integral inequalities of Chebyshev''s type, Journal of Mathematical
Analysis and Applications, 111(1985) 643-659.
[13] S. Bodjanova, Median value and median interval of a fuzzy number, Information Sciences 172
(2005) 73-89.
[14] S. Chanas, On the interval approximation of a fuzzy number, Fuzzy Sets and Systems 122(2001)
353-356.
[15] M. Delgado, M.A. Vila and W. Voxman, On a canonical representation of fuzzy number, Fuzzy
Sets and Systems 93(1998) 125-135.
[16] F. Deutsch, Best approximation in inner product space, Springer, New York, 2001.
[17] D. Dubois, H. Prade, Operations on fuzzy number, International Journal of Systems Science
9(1978) 613-626.
[18] P. Grzegorzewski, Metrics and orders in space of fuzzy numbers, Fuzzy Sets and Systems
97(1998) 83-94.
[19] P. Grzegorzewski, Nearest interval approximation of a fuzzy number, Fuzzy Sets and Systems
130(2002) 321-330.
[20] P. Grzegorzewski and E. Mrówka, Trapezoidal approximations of fuzzy numbers, Fuzzy Sets and
Systems 153(2005) 115-135.
[21] P. Grzegorzewski and E. Mrówka, Trapezoidal approximations of fuzzy numbers-revisited, Fuzzy
Sets and Systems 158(2007) 757-768.
[22] P. Grzegorzewski, Trapezoidal approximations of fuzzy numbers preserving the expected interval
- algorithms and properties, Fuzzy Sets and Systems, 159(2008) 1354-1364.
[23] P. Grzegorzewski and L. Stefanini, Non-linear shaped approximation of fuzzy numbers, Proceedings
of IFSA world congress and Eusflat Conference IFSA/Eusflat 2009, 1535-1540.
[24] P. Grzegorzewski, Algorithms for trapezoidal approximations of fuzzy numbers preserving the
expected interval, In: Foundations of Reasoning under Uncertainly, B. Bouchon-Meunier; L.
Magdalena; M. Ojeda-Aciego; J.-L. Verdegay; R.R. Yager (Eds.), Springer, 2010, pp. 85-98.
[25] R. Hassine, F. Karray, A.M. Alimi and M. Selmi, Approximation properties of piece-wise
parabolic functions fuzzy logic systems, Fuzzy Sets and Systems 157(2006) 501-515.
[26] M. Ma, A. Kandel and M. Friedman, A new approach for defuzzification, Fuzzy Sets and Systems
111(2000) 351-356.
[27] E.N. Nasibov and S. Peker, On the nearest parametric approximation of a fuzzy number, Fuzzy
Sets and Systems, 159(2008) 1365-1375.
[28] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[29] Z. Wang and J. Li, The symmetric trapezoidal approximations of fuzzy numbers. International
Conference on Computational and Information Sciences 2010, 940 - 943.
[30] C.-T. Yeh, A note on trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems
158(2007) 747-754.
[31] C.-T. Yeh, On improving trapezoidal and triangular approximations of fuzzy numbers, International
Journal of Approximate Reasoning, 48/1 (2008) 297-313.
[32] C.-T. Yeh, Trapezoidal and triangular approximations preserving the expected interval, Fuzzy
Sets and Systems, 159(2008) 1345-1353.
[33] C.-T. Yeh, Reduction to least-squares estimates in multiple fuzzy regression analysis, IEEE Transactions
on Fuzzy Systems, 17/4(2009) 935-948.
[34] C.-T. Yeh, Weighted trapezoidal and triangular approximations of fuzzy numbers, Fuzzy Sets and
Systems, 160(2009) 3059-3079.
[35] C.-T. Yeh, Weighted semi-trapezoidal approximations of fuzzy numbers, Fuzzy Sets and Systems,
165(2011) 61-80.
[36] W. Zeng and H. Li, Weighted triangular approximation of fuzzy numbers, International Journal
of Approximate Reasoning, 46/1 (2007) 137-150.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top