跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家立
研究生(外文):Chia-li Lin
論文名稱:運用蒸汽衝擊共振獵能裝置之研究
論文名稱(外文):The Study of the Vapor Impacting Enhancement of Resonance for Vibration-Induced Energy Harvester
指導教授:林大偉林大偉引用關係
指導教授(外文):Ta-wei Lin
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:振動致能器懸臂樑自然頻率共振
外文關鍵詞:Natural FrequencyResonanceCantilever BeamEnergy Harvester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
熱管因具有高導熱之性能,故常應用於電子元件之散熱,由於熱管係利用工作流體吸收潛熱後之相變化方式傳導熱量,過程中蒸汽由蒸發段移動至冷凝段之動量可回收產生電能。本研究目的係利用該蒸汽衝擊壓電材料,藉由壓電材料之變形產生電能,其中最關鍵的問題是壓電獵能器與蒸汽振動兩者之共振頻率的匹配。本研究係利用可模擬熱管內部蒸汽衝擊流之蒸汽產生器為主要驅動方式,並以實驗方式量測蒸汽產生器之頻率。同時以蒸汽產生器所提供之振動頻率作為獵能器目標函數,將最佳化方法結合商業軟體COMSOL設計獵能器。為了改變獵能器頻率,故將壓電材料PVDF與多種材料之懸臂樑結合,藉由最佳化方法改善懸臂樑之尺寸進而調整獵能器之自然頻率。其中實驗的參數除了懸臂樑材料,如紅銅、鋁及塑膠PE外,還有蒸汽速度以及噴嘴數量等。此外,在最佳化後之獵能器再以振動平台測試驗證獵能器之自然頻率是否符合蒸汽振動頻率。經由不同參數測試後,我們發現在共振的狀態下紅銅獵能器提升了267.65%、鋁獵能器PVDF提升了293.38%、PE獵能器則可提升至370.59%。
由本研究中的實驗結果可發現,透過COMSOL搭配最佳化演算法設計,藉由懸臂樑尺寸變化以調整獵能器之自然頻率,使其符合蒸汽產生器之共振頻率,以達到增加發電量之目的,同時懸臂樑之材質也會影響發電量,此研究則證實壓電材料應用於熱管中之蒸汽獵能是相當好的方法。
Heat pipe has the characteristic of high thermal conductivity. It is often used in the cooling of electronic components. When the heat pipe is heated, the liquid phase of working fluid changes to vapor phase. The vapor flows along the vapor spacing to the condenser section. The purpose of this study is using the deformation of the piezoelectric material by vapors impacting enables it to convert the vapor momentum to the power. The important issue is to find the resonant frequency between the hybrid PVDF and the vapor flow of the system. In this study, we used the vapor generator as the power source and measured the vapor frequency of this system. The vapor flow frequency of vapor generator is considered to be the objective function for Gene algorithm to optimize dimension of hybrid PVDF. The hybrid PVDF designed by combining a direct finite element solver with an optimal method. In order to change the natural frequency of hybrid PVDF, we combined PVDF with different cantilever beam material and adjusted the dimension of cantilever beams. Besides, the vapor velocity and the number of nozzles are the experimental parameters. Furthermore, the optimal hybrid PVDF is examining by shaker to confirm its natural frequency equal to system frequency. From experimental results, the copper hybrid PVDF improved 267.65%, the aluminum hybrid PVDF improved 293.38% and the PE hybrid PVDF improved 370.59%.
The results presented in this paper show that we had designed geometry of the cantilever beam combined with piezoelectric material through commercial software and genetic algorithm. It will achieve the resonance frequency with the vapor generator. Through the resonance frequency to improve the output voltage. Additionally, the material of cantilever beam affects output voltage. The present study is proven the PVDF used as energy harvester in heat pipe is worthy application.
摘要 I
ABSTRACT II
表次 VII
圖次 VIII
符號索引 X
一、緒論 1
1-1研究動機 1
1-2研究目的 1
1-3文獻回顧 2
1-4論文大綱 8
二、數學分析與理論基礎 14
2-1熱管之動能方程式 14
2-2熱管之蒸汽動能 17
2-3結構之振動方程式 18
2-4壓電基礎原理 19
2-5壓電材料種類 19
2-6壓電材料本構方程式 20
三、實驗設備 24
3-1實驗設備 24
3-2模擬分析 26
3-3最佳化方法 26
3-4壓電致電機構之設計 27
3-5實驗過程 28
3-6頻譜分析 29
3-6-1離散傅立葉轉換(Discrete Fourier Transform) 29
3-6-2快速傅立葉轉換(Fast Fourier Transform) 30
四、結果與討論 45
4-1量測平台建立 45
4-1-1噴嘴與壓電材料間距 45
4-1-2壓電材料壽命測試 45
4-2最佳化參數模擬分析 46
4-2-1最佳化設計之獵能器 46
4-2-2振動平台之驗證結果 47
4-3頻率對發電量之影響 47
4-4蒸汽速度對發電量之影響 49
4-5噴嘴數量對發電量之影響 50
五、結論與建議 82
5-1結論 82
5-2建議 83
參考文獻 84
個人簡歷 90
[1]S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis,J. M. Rabaey, P. K. Wright, V. Sundararajan,“Improving poweroutput for vibration-based energy scavengers,”Institute of Electrical andElectronics Engineers Inc., vol.4, pp.28-36,2005.
[2]N.E. Bassam, P. Maegaard, M.L. Schlichting,“Solar Energy,”Distributed Renewable Energies for Off-Grid Communities, pp.91–109, 2013.
[3]N.E. Bassam, P. Maegaard, M.L. Schlichting,“Wind Energy,”Distributed Renewable Energies for Off-Grid Communities, pp.111–123, 2013.
[4]朱旭山,“熱電材料與元件之發展與應用,” 工業材料雜誌, 220期, 2005.
[5]D. Reay,P. Kew, “Heat Pipes,” Theory, Design and Applications, 5 edition, 2006.
[6]T. Nguyen,P. Johnson,A. Akbarzadeh, K. Gmson,M. Mochizuki, “Design, manufacture and testing of a closed cycle thermosyphon on rankine engine,”Heat Recovery Systems & CHP,vol. 15, No.4, pp.333-346, 1995.
[7]T. Yamamoto, T. Furuhata, N. Arai, K. Mori,“Design and testing of the organic rankine cycle,”Energy,vol.26, pp.239–251, 2001.
[8]A. Akbarzadeh, P. Johnson,T. Nguyen, M. Mochizuki, M. Mashiko, I. Sauciuc, S. Kusaba, H. Suzuki, "Formulation and Analysis of the Heat Pipe Turbine for Production of Power from Renewable Sources," Applied Thermal Engineering, vol.21, pp.1551–1563, 2001.
[9]Y.F.Maydanik,“Loop heat pipes”, Applied Thermal Engineering, vol.25, 2005.
[10]Q. Mo, J.T. Liang, “A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability,” International Journal of Heat and Mass Transfer, vol.49, pp.770-776, 2006.
[11]B.M. Ziapour, “Performance analysis of an enhanced thermosyphon Rankine cycle usingimpulse turbine,”Energy, vol.34, pp.1636-1641, 2009.
[12]V.M. Kiseev, V.V. Vlassov, I. Muraoka,“Experimental optimization of capillary structures for loop heat pipes andheat switches,”Applied Thermal Engineering, vol.30, pp.1312-1319, 2010.
[13]N. Yamada,T. Minami, M.N.A. Mohamad, “Fundamental experiment of pumpless Rankine-type cycle for low-temperatureheat recovery,”Energy, vol.36,pp.1010-1017, 2011.
[14]S. Wang, W. Zhang, X. Zhang, J. Chen, “Study on start-up characteristics of loop heat pipe under low-power,”International Journal of Heat and Mass Transfer, vol.54,pp. 1002-1007, 2011.
[15]H.A. Sodano, G. Park, D.J. Leo, D.J. Inman, “Model of piezoelectric power harvesting beam,”ASME International Mechanical Engineering Congress, Washington, D.C., 2003
[16]H.A. Sodano, D.J. Inman, “Comparison of piezoelectric energy harvesting devices for recharging batteries,”Journal of Intelligent Material Systems and Structures, vol.16, pp.799-807, 2005.
[17]H.A. Sodano, D.J. Inman, “Generation and storage of electricity from power harvesting devices,”Journal of Intelligent Material Systems and Structures, vol.16, pp.67-75, 2005.
[18]S.N. Chen, G.J. Wang, M.C. Chien, “Analytical modeling of piezoelectric vibration-induced micro power generator,”Mechatronics, vol.16, pp.379-387, 2006.
[19]H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong, L. Wang, D. Chen, B.C. Cai, Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,”Microelectronics Journal, vol.37, pp.1280-1284, 2006.
[20]P.H. Chen, S.C. Lin,“Wind-Powered Piezo Generators,”The 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007.
[21]E.O. Torres, G.A. Rincon-Mora,“Energy Harvesting System in Package Microsystem,”ASME Journal of Energy Engineering, vol.134, No.4, 2008.
[22]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, A. Taroni,“Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems,”Sensors and Actuators A, vol.142, pp.325-335, 2008.
[23]S.J. Jeong, M.S. Kim, J.S. Song, H.K. Lee, “Two-layered piezoelectric bender device for micro-power generator,”Sensors and Actuators A, vol.148, pp.158-167, 2008.
[24]D. Shen, J.H. Park, J.H. Noh, S.Y. Choe, S.H. Kim, H.C. Wikle III, D.J. Kim, “Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting,”Sensors and Actuators A, vol.154, pp.103-108, 2009.
[25]D. Koyama , K. Nakamura,“Electric power generation using vibration of a polyurea piezoelectric thin film,”Applied Acoustics, vol.71, pp.439-445, 2010.
[26]I. Sari, T. Balkan, H. Kulah,“An electromagnetic micro Power generator for low-frequency environmental vibrations based on the frequency upconversion technique,”Journal of Microelectromechanical Systems, vol.19, no.1, February 2010.
[27]W.G. Li, S. He,“Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass,”IEEE Transactions on Industrial Electronics, vol.57, no.3,March 2010.
[28]M.O. Mansour, M.H. Arafa, S.M. Megahed, “Resonator with magnetically adjustable natural frequency for vibration energy harvesting,”Sensors and Actuators A, vol.163, pp.297-303, 2010.
[29]X.M. Jing, J.M. Miao, T. Xu, M. Olfatnia, L. Norford, “Vibration characteristics of micromachined piezoelectric diaphragms with a standing beam subjected to airflow,”Sensors and Actuators A, vol.164, pp.22-27, 2010.
[30]R. Daukseviciusa, G. Kulvietisa, V. Ostaseviciusb, I. Milasauskaiteb, “Finite element analysis of piezoelectric microgenerator-towards optimal configuration,”Procedia Engineering, vol.5, pp.1312-1315, 2010.
[31]C.M.T. Tien, N.S. Goo, “Use of a piezo-composite generating element for harvesting wind energy in an urban region,”Aircraft Engineering and Aerospace Technology, vol.82,Issue6, pp. 376-381.
[32]W. Li, T.S. Liu, C.C. Hsiao, “A miniature generator using piezoelectric bender with elastic base,”Mechatronics,vol.21,pp.1183-1189, 2011.
[33]D. Zhua, S. Beeby, J. Tudor, N. White, N. Harris, “Improving output power of piezoelectric energy harvesters using multilayer structures,” Procedia Engineering, vol.25, pp.199-202, 2011.
[34]R. Ly, M. Rguiti, S. D’Astorg, A. Hajjaji, C. Courtois, A. Leriche, “Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting,” Sensors and Actuators A, vol.168, pp.95-100, 2011.
[35]H. Liu, C. Quan, C.J. Tay, T. Kobayashi, Chengkuo Lee, “A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations,” Physics Procedia, vol.19, pp.129-133, 2011.
[36]S. Korla, R.A.Leon, I.N.Tansel, A.Yenilmez, A.Yapici, M.Demetgul, “Designandtestingofanefficientandcompactpiezoelectricenergyharvester,” Microelectronics Journal, vol.42, pp.265-270, 2011.
[37]H. Liu, C.J. Tay, C. Quan, T. Kobayashi, C. Lee,“Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power,”Journal of Microelectromechanical Systems, vol.20, no.5, October 2011.
[38]Z. Cao, J. Zhang, H. Kuwano, “Design and characterization of miniature piezoelectric generators with lowresonant frequency,”Sensors and Actuators A, vol.179, pp.178–184, 2012.
[39]J. Dayou, W.Y.H.Liew, M.S. Chow, “Increasingthebandwidthof the width-splitpiezoelectric energy harvester,” Microelectronics Journal, vol.43, pp.484-491, 2012.
[40]C.H. Huang, Y.F. Chen, H. Ay, “An inverse problem in determining the optimal position for piezoelectric fan with experimental verification,” International Journal of Heat and Mass Transfer, vol.55, pp.5289-5301, 2012.
[41]M. Karpelson, G.Y. Wei, R.J. Wood, “Driving high voltage piezoelectric actuators in microrobotic applications,” Sensors and Actuators A, vol.176, pp.78-89, 2012.
[42]M.N. Fakhzan, A.G.A. Muthalif, “Harvesting vibration energy using piezoelectric material: Modeling, simulation and experimental verifications,” Mechatronics, vol.23, pp.61-66, 2013.
[43]B.A. Seddik, G. Despesse, E. Defay,“Improved Wideband Mechanical Energy Harvester Based on Longitudinal Piezoelectric Mode,” Procedia Engineering, vol.47, pp.1255-1258, 2012.
[44]X. Wang, “Piezoelectricnanogenerators - Harvestingambientmechanicalenergyat the nanometerscale,” Nano Energy, vol.1, pp.13-24, 2012.
[45]N.H. Diyana, A.G.A. Muthalif, M.N. Fakhzan, A.N.Nordin, “Vibration Energy harvesting using single and comb-shaped piezoelectric beam structures: Modeling and Simulation,” Procedia Engineering, vol.41, pp.1228-1234, 2012.
[46]R. Violette, E.deLangre, J.Szydlowski, “A linear stability approach to vortex-induced vibrations and waves,”Journal of Fluids and Structures,vol.26,pp.442-466, 2010.
[47]K. Lam, Y.F.Lin, L.Zou, Y.Liu, “Numerical study of ?ow patterns and force characteristics for square and rectangular cylinders with wavy surfaces,”Journal of Fluids and Structures, vol.28, pp.359-377, 2012.
[48]B.S. Leo, S.T. Hsu, “A simple reaction turbine as a solar engine, ”Solar Energy, vol.4, Issue 2, pp.16-20, 1960.
[49]S.B. Riffat, X. Zhao, P.S. Doherty, “Analytical and numerical simulation of the thermal performance of ‘mini’ gravitational and ‘micro’ gravitational heat pipes,”Applied Thermal Engineering, vol.22, pp.1047-1068, 2002.
[50]A. Safari, B. Jadidian, E.K. Akdogan, “Piezoelectric Composites for Transducer Applications,”Comprehensive Composite Materials, pp.533-561, 2000.
[51]汪建民等編著,粉末冶金技術手冊。中華民國粉末冶金協會/中華民國產業科技發展協進會, 1994。
[52]周卓明,壓電力學,全華科技圖書,2003。
[53]吳哲豪,”可調頻壓電樑之模型推導與振能回收研究,”國立臺灣科技大學機械工程系碩士論文,2009。
[54]陳昭銘,”頻譜分析最佳化的理論與應用,”義守大學電機工學程系碩士論文,2005。
[55]吳榮慶,”頻譜分析技術的改進及在電機監視的應用,”國立中山大學電機工程學系博士論文,2001。
[56]蒙以正,數位信號處理應用MATLAB,旗標出版股份有限公司,2004。
[57]張德風,詳解MATLAB數字信號處理,電子工業出版社,2010。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top