南一出版社(2009a)。國民中學數學教科書第四冊。臺南:南一。
南一出版社(2009b)。國民中學數學教科書第五冊。臺南:南一。
胡志偉、顏乃欣(1995)。中文字的心理歷程。載於曾進興(主編),語言病理學(29-76)。台北:心理。
高雄市教育局(2012年11月4日)。高雄市教育局全球資訊網【各項學校建設分析】。取自http://www.kh.edu.tw/releaseRedirect.do?unitID=183&pageID=3096
柯華葳、陳明蕾、廖家寧(2005)。詞頻、詞彙類型與眼球運動型態:來自篇章閱讀的證據。中華心理學刊,47(4),381-398。教育部(2013年3月10日)。教育部電子報(第378期)【2008-2011教育部中小學資訊教育白皮書】。取自http://epaper.edu.tw/topical.aspx?topical_sn=375
陳琪瑤、吳昭容(2012)。幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。教育實踐與研究,25(2),35-66。康軒出版社(2009a)。國民中學數學教科書第四冊。臺南:康軒。
康軒出版社(2009b)。國民中學數學教科書第五冊。臺南:康軒。
曾志朗(1991)。華語文的心理學研究,本土化的沈思。載於楊中芳、高尚仁(主編),中國人、中國心—發展與教學篇(539-582)。台北:遠流。
翰林出版社(2009a)。國民中學數學教科書第四冊。臺南:翰林。
翰林出版社(2009b)。國民中學數學教科書第五冊。臺南:翰林。
國民中學學生基本學力測驗推動工作委員會(2012年9月4日)。歷屆試題。取自http://www.bctest.ntnu.edu.tw/
國家教育研究院(2011a)。國民中學數學教科書第四冊。臺北:國家教育研究院。
國家教育研究院(2011b)。國民中學數學教科書第五冊。臺北:國家教育研究院。
Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and evaluating warrants. Journalof Mathematical Behavior, 24(2), 125-134.
Alexander, P. A., & Fox, E. (2004). A historical perspective on reading research and practice. Theoretical models and processes of reading, 5, 33-68.
Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge, MA: MIT.
Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56, 786-795.
Andrà, C., Arzarello, F., Ferrara, F., Holmqvist, K., Lindstrom, P., Robutti, O., & Sabena, C. (2009). How students read mathematical representations: An eye tracking study. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 49-56). Thessaloniki, Greece: PME.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in cognitive sciences, 4(11), 417-423.
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological bulletin, 91(2), 276-292.
Becker, J., & Varelas, M. (1993). Semiotic aspects of cognitive development - illustrations from early mathematical cognition. Psychological Review, 100 (3), 420-431.
Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123-135.
Britton, B. K., & Glynn, S. M. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74(1), 51-61.
Brown, R., Pressley, M., Van Meter, P., & Schuder, T. (1996). A quasi-experimental validation of transactional strategies instruction with low-achieving second-grade readers. Journal of educational psychology, 88, 18-37.
Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155-166.
Chall, J.S. (1995). Stages of Reading Development (2nd ed.). New York, NY.
Chandler, P., & Sweller, J. (1992). The split‐attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233-246.
Chen, C. Y., & Wu, C. J. (2012, July). Color effects in reading geometry proofs: Evidence from eye movements and recall tests. In T. Y. Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4 (p. 256). Taipei, Taiwan: PME.
Cheng, Y. H., & Lin, F. L. (2005). One more step toward acceptable proof in geometry. Symposium conducted at the meeting of 11th EARLI Conference, Nicosia, Cyprus.
Clark, J. M., & Campbell, J. I. D. (1991). Integrated versus modular theories of number skills and acalculia. Brain and Cognition, 17, 204-239.
Cocking, R. R., & Mestre, J. P. (1988). Linguistic and Cultural Influences on Learning mathematics. Hillsdale, NJ: Lawrence Earlbaum Associates.
Deering, M. (1995, September). Geometry compression. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (pp. 13-20). LA., USA: ACM.
delMas, R. O. B. E. R. T., Garfield, J. O. A. N., & Ooms, A. (2005, July). Using assessment items to study students’ difficulty reading and interpreting graphical representations of distributions. In K. Makar (Ed.), Proceedings of the Fourth International Research Forum on Statistical Reasoning, Literacy, and Reasoning (on CD). Auckland, New Zealand: University of Auckland.
Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2012). Students’ Eye Movements when Solving Mathematical Word Problems together with Illustrations. Staging knowledge and experience: how to take advantage of representational technologies in education and training, 55-57.
Dole, J. A., Duffy, G. G., Roehler, L. R., & Pearson, P. D. (1991). Moving from the old to the new: Research on reading comprehension instruction. Review of Educational Research, 61(2), 239-264.
Dau F. (2004). Types and Tokens for Logic with Diagrams. In: K. E. Wolff, H. Pfeiffer, & H. Delugach(Eds.), Conceptual Structures at Work: 12th International Conference on Conceptual Structures(pp. 62–93). Berlin: Springer.
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processing. In R. Suttherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 142-157). Berlin: Springer.
Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 37-52). Boston, MA: Kluwer Academic.
Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for Learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st North American PME Conference, Vol. 1 (pp. 3-26). Columbus, OH, USA: PME.
Duval, R. (2002, November). Proof understanding in mathematics: What ways for students. Proceedings of 2002 international conference on mathematics: Understanding proving and proving to understand (pp. 61-77). Taipei, Taiwan. National Taiwan Normal University.
Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561-1574.
Erbas, A. K., & Yenmez, A. A. (2011). The effect of inquiry-based explorations in a dynamic geometry environment on sixth grade students’ achievements in polygons. Computers & Education, 57(4), 2462-2475.
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph comprehension. Diagrammatic representation and inference (pp. 18-30). Springer Berlin Heidelberg.
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in mathematics Education, 124-158.
Gagné, E., Yekovich, C. and Yekovich, F. (1994). The cognitive Psychology of School Learning (2nd ed.). New York NY.
Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies of Mathematics, 74, 163-183.
García, R. R., Quirós, J. S., Santos, R. G., González, S. M., & Fernanz, S. M. (2007). Interactive multimedia animation with Macromedia Flash in Descriptive Geometry teaching. Computers & Education, 49(3), 615-639.
Glenberg, A. M. & Langston, W. E. (1992). Comprehension of illustrated text : pictures help to build mental models . Journal of Memory and Language, 31, 129-151.
Glöckner, A., & Herbold, A. K. (2011). An eye‐tracking study on information processing in risky decisions: Evidence for compensatory strategies based on automatic processes. Journal of Behavioral Decision Making, 24(1), 71-98.
Goodman, K. S. (1970). Behind the eye: What happens in reading. Reading: Process and program, 3-38.
Gough, P.B., Ehri, L.C., & Treiman, R. (Eds.)(1992). Reading Acquisition. Hillsdale, NJ: Erlbaum.
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518-565.
Harel, G., & Sowder, L. (2007). Toward a comprehensive perspective on proof. In F. Lester (Ed.), Handbook of Research on Teaching and Learning Mathematics, Vol. 2 (pp. 805-842): NCTM.
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in mathematics education, 396-428.
Heaver, B., & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19(4), 398-405.
Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. Journal of experimental psychology. Learning, memory, and cognition, 36(1), 37.
Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific text. In Barr, R., Kamil, M. L., Mosenthal, P. B., & Pearson, P. D. (Eds.), Handbook of Reading Research, Vol. 2 (pp. 641-668). Longman, New York.
Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixations. Journal of Educational Psychology, 84(1), 76-84.
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of educational psychology, 87, 18-32.
Herbst, P. (2004). Interactions with diagrams and the making of reasoned conjectures in geometry. ZDM, 36(5), 129-139.
Hiebert, J. (1988). A theory of developing competence with written mathematical symbols. Educational studies in mathematics, 19(3), 333-355.
Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and instruction, 17(6), 722-738.
Hubbard, R. (1990). Teaching mathematics reading and study skills. International Journal of Mathematical Education in Science and Technology, 21, 265-269.
Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358-390.
Iqbal, S. T., Zheng, X. S., & Bailey, B. P. (2004, April). Task-evoked pupillary response to mental workload in human-computer interaction. In CHI'04 extended abstracts on Human factors in computing systems (pp. 1477-1480). ACM.
Jamet, E., Gavota, M., & Quaireau, C. (2008). Attention guiding in multimedia learning. Learning and Instruction, 18, 135-145.
Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of experimental psychology. Learning, memory, and cognition, 29(6), 1312.
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability.Psychological review, 92, 137-172.
Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2003). How prior knowledge, working memory capacity, and relevance of information affect eye-fixations in expository text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 447-457.
Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied cognitive psychology, 13(4), 351-371.
Kintsch, W. (1988). The use of knowledge in discourse processing: A construction-integration model. Psychological Review, 95, 163-182.
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. New York: Cambridge University.
Kintsch, W., & van Dijk, T.A. (1978). Towards a model of text comprehension and production. Psychological Review, 85, 363-394.
Kosslyn, S. M. (1989) .Understanding charts and graphs. Applied Cognitiy Psychology, 3, 185-226.
Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science, 14(4), 511-550.
Knuth, E. J. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in Mathematics Education, 33, 379-405.
Kucan, L., & Beck, I. L. (1997). Thinking aloud and reading comprehension research: Inquiry, instruction, and social interaction. Review of educational research, 67(3), 271-299.
Kuchinke, L., Võ, M. L., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence.International Journal of Psychophysiology, 65(2), 132-140.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive science, 11(1), 65-100.
Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In Meaning in mathematics education (pp. 159-179). Springer.
Lee, T. N., & Cheng, Y. H. (2007). The performance of geometric argumentation in one step reasoning. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Annual Conference of the International Group for the Psychology of Mathematics Education (p. 256). Seoul, Korea: PME.
Lemke, J. L. (1999). Typological and topological meaning in diagnostic discourse. Discourse Processes, 27(2), 173-185.
Lin, F. L., & Cheng, Y. H. (2003, December). linfl team (2003): The Competence of Geometric Argument in Taiwan Adolescents. In International Conference on Science & Mathematics Learning (pp. 16-18). Taipei, Taiwan.
Loman, N. L., & Mayer, R. E. (1983). Signaling techniques that increase the understandability of expository prose. Journal of Educational Psychology, 75(3), 402-12.
Lorch Jr, R. F., Lorch, E. P., & Matthews, P. D. (1985). On-line processing of the topic structure of a text. Journal of Memory and Language, 24(3), 350-362.
Lorch, R. F., Lorch, E. P., & Inman, W. E. (1993). Effects of signaling topic structure on text recall. Journal of Educational Psychology, 85(2), 281.
Lovett, M. C., & Anderson, J. R. (1994). Effects of solving related proofs on memory and transfer in geometry problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(2), 366-378.
Lowe, R. K. (1993). Constructing a mental representation from an abstract technical diagram. Learning & Instruction, 3, 157-179.
Lowe, R. K. (1999). Extracting information from an animation during complex visual learning.European Journal of Psychology of Education, 14(2), 225-244.
Lowrie, T., & Diezmann, C. M. (2005). Fourth‐grade students’ performance on graphical languages in mathematics. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Annual Conference of the International Group for the Psychology of Mathematics Education ,Vol. 3 (pp. 265-272). Melbourne: PME.
Lowrie, T., Diezmann, C., & Logan, T. (2011). Understanding graphicacy: Students’ making sense of graphics in mathematics assessment tasks. International Journal for Mathematics Teaching and Learning, 1-32.
Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Transactions on Graphics (TOG), 5(2), 110-141.
Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational studies in mathematics, 44(1-2), 87-125.
Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. Proceedings of the 2002 IEEE 7th conference on Human factors and power plants (pp. 7-5). IEEE.
Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377-389.
Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 99(3), 640.
Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8, 357-371.
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 31-48). Cambridge: Cambridge University.
Mayer, R. E. (2008). Learning and Instruction (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and instruction, 20(2), 167-171.
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology Applied, 11(4), 256.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375-407.
Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics education research. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education, Vol. 2 (pp. 88–93). Taipei, Taiwan: National Taiwan Normal University.
Moore, R. C.(1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266.
Myers, J., & O’Brien, E. (1998). Accessing the discourse representation during reading. Discourse Processes, 26 (2 & 3), 137-157.
Nieuwenhuis, S., De Geus, E. J., & Aston‐Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162-175.
Ögren, M., & Nyström, M. (2012). How illustrations influence performance and eye movement behaviour when solving problems in vector calculus. LTHs 7: e Pedagogiska Inspirationskonferens.
Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics, 63(3), 325-346.
Österholm, M. (2007). A reading comprehension perspective on problem solving. In C. Bergsten & B. Grevholm (Eds.). Developing and Researching Quality in Mathematics Teaching and Learning. Proceedings of MADIF 5, the 5th Swedish Mathematics Education Research Seminar, Malmö (pp. 136-145). Linköping: SMDF.
Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445-453.
Paivio, A. (1971). Imagery and Verbal processes, New York: Holt, Rinehart and Winston.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255-287.
Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and instruction, 1(2), 117-175.
Paivio, A. (2006). Mind and Its Evolution: A Dual Molding Theoretical Interpretation, Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International journal of human-computer studies, 59(1), 185-198.
Peters, M. (2010). Parsing Mathematical Constructs: Results from a Preliminary Eye Tracking Study. In Joubert, M. (Ed.) Proceedings of the British Society for Research into Learning Mathematics, 30(2), 47-52.
Pimm, D., & Wagner, D. (2003). Investigation, mathematics education and genre: An essay review of Candia Morgan's Writing Mathematically: the Discourse of Investigation. Educational Studies in Mathematics, 53(2), 159-178.
Pinker, S. (1990). A theory of graph comprehension. In R. Frele (Ed.), Artificial Intelligence and the Future of Testing (pp. 73–126). Hillsdale, NJ: Erlbaum
Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology, 47(3), 560-569.
Pólya, G.(1995)。怎樣解題(閻育蘇譯)。台北:九章。(原著出版於1957)
Pólya, G. (2008). How to solve it: A new aspect of mathematical method. Princeton University.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., & Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements. Journal of Experimental Psychology: Applied, 7(3), 219-226.
Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal protocols. Memory & cognition, 17(6), 759-769.
Sadoski, M., & Paivio, A. (2001). Imagery and text: A Dual Coding Theory of Reading and Writing. Mahwah, NJ: Lawrence Erlbaum Associates.
Sadoski, M. & Paivio, A. (2004). A dual coding theoretical model of reading. In R. B. Ruddell & N. J. Unrau (Eds.), Theoretical Models and Processes of Reading (5th ed.) (pp. 1329-1362). Newark, DE: International Reading Association.
Sadoski, M., Paivio, A., & Goetz, E. T. (1991). A critique of schema theory in reading and a dual coding alternative. Reading Research Quarterly, 26, 463-484.
Schmalhofer, F., McDaniel, M. A., & Keefe, D. (2002). A unified model for predictive and bridging inferences. Discourse Processes, 33, 105-132.
Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology General, 122, 166-183.
Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123-151.
Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34, 4-36.
Shah, P., & Freedman, E. G. (2003). Visuospatial cognition in electronic learning. Journal of Educational Computing Research, 29(3), 315-324.
Shah, P., & Freedman, E. G. (2011). Bar and Line Graph Comprehension: An Interaction of Top‐Down and Bottom‐Up Processes. Topics in Cognitive Science, 3(3), 560-578.
Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91, 690-702.
Stenning, K., & Oberlander, J. (1994). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19, 97-140.
Stern, E., Aprea, C., & Ebner, H. G. (2003). Improving cross-content transfer in text processing by means of active graphical representation. Learning and Instruction, 13(2), 191-203.
Sweller, J. & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.
Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate?. International journal of human-computer studies, 57(4), 247-262.
Usiskin, Z. (1980). What should not be in the algebra and geometry curricula of averagecollege-bound students? The Mathematics Teacher, 73, 413-424.
Van Gerven, P. W., Paas, F., Van Merriënboer, J. J., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167-174.
Velichkovsky, B. M., Rothert, A., Kopf, M., Dornhofer, S. M., & Joos, M. (2002). Towards an express-diagnostics for level ofprocessing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour, 5, 145-156.
Verney, S. P., Granholm, E., & Marshall, S. P. (2004). Pupillary responses on the visual backward masking task reflect general cognitive ability. International Journal of Psychophysiology, 52(1), 23-36.
Võ, M. L. –H., Jacobs, A. M., Kuchinke, L., Hofmann. M. H., Conrad, M., Schacht, A., & Hutzler, F. (2008). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45, 130–140.
Weber, K. & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics, 25(1), 34-38.
Weber, K., & Mejia-Ramos, J.-P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344. doi:10.1007/s10649-010-9292-z.
Yang, K. L. (2011). Structures of cognitive and metacognitive reading strategy use for reading comprehension of geometry proof. Educational Studies in Mathematics. doi:10.1007/s10649-011-9350-1.
Yang, K. L., Lin, F. L., & Wang, Y. T. (2008). The effects of proof features and question probing on understanding geometry proof. Contemporary Educational Research Quarterly, 16(2), 77-100.
Zacks, J., Levy, E., Tversky, B., & Schiano, D.(2002). Graphs in Print. In P. Olivier, M. Anderson, B. Meyer (Eds.), Diagrammatic Representation and Reasoning. Springer. London, England.
Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition, 27(6), 1073-1079.
Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive science, 18(1), 87-122.