|
Chang, H, H., Cui, Y., &; Gierl, J, M. (2012). Estimating classication consistency and accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 49,19-38. Choi, H, J., Templin, J., Cohen, A., &; Atwood, C. (2010). The impact of model misspecication on estimation accuracy in diagnostic classication models. Paper pre-sented at the annual meeting of the National Council on Measurement in Education in Denver, Colorado. Corter, J. E. &; Im, S. (2011). Statistical consequences of attribute misspecication in the rule space method. Educational and Psychological Measurement, 71(4), 712-731. de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2),179-199. de la Torre, J., Deng, W., &; Hong, Y. (2010). Factors aecting the item parameter estimation and classication accuracy of the DINA model. Journal of Educational Measurement, 47(2), 227-249. de la Torre, J. (2009). DINA Model and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications .Journal of Educational Measurement, 45(4), 343-362. de la Torre, J. &; Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353. DeCarlo, T, L. (2012). Recognizing Uncertainty in the Q-Matrix via a Bayesian Ex-tension of the DINA Model. Applied Psychological Measurement, 36(6), 447-468. DeCarlo, T, L. (2011). On the analysis of fraction subtraction data: The DINA model classication latent class sizes, and the Q-Matrix. Applied Psychological Measurement, 35(1), 8-26. DiBello, L. V., Roussos, L. A., &; Stout, W.F. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, 26 (pp. 979-1030). Amsterdam: Elsevier. Hong, C, Y. (2013). Estimation of Generalized DINA Model with Order Restrictions. master thesis. Taiwan, Taipei: National Taiwan Normal University. Henson, R. A., Templin, J. L., &; Willse, J. T. (2009). Dening a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210. Junker, B. W., &; Sijtsma, K. (2001). Cognitive assessment models with few assump-tions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. Kunina-Habenicht, O., Rupp, A, A., &; Wilhelm, O. (2012). The impact of model mis-specication on parameter estimation and item-t assessment in log linear diagnostic classication models. Journal of Educational Measurement, 49, 59-81. Maris,E. (1999). Estimating multiple classication latent class models. Psychometrika, 64, 187-212. Rupp, A, A., &; Templin, J. (2008). The Eects of Q-Matrix misspecication on parameter estimates and classication accuracy in the DINA Model. Educational andPsychological Measurement, 68, 76-96. Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345-354. von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8-28. von Davier, M. (2005). A general diagnostic model applied to language testing data.(ETS Research Report RR-05-16). Wang, W, C. (2010). Compare the Parameters Estimated by DINA Model with by G-DINA Model. master thesis. Taiwan, Taichung: National Taichung University of Education.
|