|
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332. Choi, H. J. (2010). A Model that Combines Diagnostic Classification Assessment with Mixture Item Response Theory Models. Unpublished doctoral dissertation, University of Georgia, Athens. DeMars, C. E., &; Wise, S. L. (2010). Can differential rapid-guessing behavior lead to differential item functioning. International Journal of Testing, 10(3), 207-229. Ferrando, P. J., &; Lorenzo-Seva, U. (2007). An item response theory model for incorporating response time data in binary personality items. Applied Psychological Measurement, 31(6), 525-543. Fox, J. P., Hornke, L. F., Klein Entink, R. H., &; Kuhn, J. T.(2009). Evaluating cognitive theory: A joint modeling approach using responses and response times. Psychological Methods, 14(1), 54-75. Huber, P. J. (1967). The behavior of maximum likelihood estimation under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221-233. Hwang, W. C. (2011). DIF Detection for Polytomous Items Using Multiple-Group Categorical CFA. Unpublished master thesis, National Taiwan Normal University, Taipei. Lee, Y. H., &; Chen, H. (2011). A review of recent response-time analysis in educational testing. Psychol Test Assess Model, 53(3), 359-379. Loeys, T., Rosseel, Y., &; Baten, K. (2011). A joint modeling approach for reaction time and accuracy in psycholinguistic experiments. Psychometrika, 76(3), 487-503. Lu, J., Rouder, J. N., Speckman, P. L., Sun, D., &; Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589-606. Maij-de Meij, A. M., Kelderman, H., &; van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975-999. Maris, E. (1993). Additive and multiplicative models for gamma distributed variables, and their application as psychometric models for response times. Psychometrika, 58, 445-469. McIntyre, H. H. (2011). Investigating response styles in self-report personality data via a joint structural equation mixture modeling of item responses and response times. Personality and Individual Differences, 50(5), 597-602. Meyer, J. P. (2010). A mixture Rasch model with item response time components. Applied Psychological Measurement, 34, 521-538. Millsap, R. E., &; Yun-Tein, J. (2004). Assessing factorial invariance in orderedcategorical measures. Multivariate Behavioral Research, 39(3), 479-515. Muthén, L. K., &; Muthén, B. O. (1998-2010). Mplus User’s Guide. Los Angeles: Muthén &; Muthén. Oosterloo, S. J. (1975). Modellen voor reactie-tijden [Models for reaction times]. Unpublished master thesis, Faculty of Psychology, University of Groningen, The Netherlands. Oshima, T. C. (1994). The effect of speededness on parameter estimation in item response theory. Journal of Educational Measurement, 31, 200-219. Ranger, J., &; Kuhn, J. T. (2012). Improving item response theory model calibration by considering response times in psychological tests. Applied Psychological Measurement, 36(3), 214-231. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen, Denmark: Nielson &; Lydiche. Roskam, E. E. (1987). Toward a psychometric theory of intelligence. Progress in mathematical psychology, 1, 151-174. Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271-282. Scheiblechner, H. (1979). Specific objective stochastic latency mechanisms. Journal of Mathematical Psychology, 19, 18-38. Scheiblechner, H. (1985). Psychometric models for speed-test construction: The linear exponential model. In S. E. Embretson (Ed.), Test design: Developments in psychology and education (pp. 219-244). New York: Academic Press. Schnipke, D. L., &; Scrams, D. J. (1997). Modeling item response times with a twostate mixture model: A new method of measuring speededness. Journal of Educational Measurement, 34, 213-232. Schnipke, D. L., &; Scrams, D. J. (2002). Exploring issues of examinee behavior: Insights gained from response-time analyses. In C.N. Mills, M. Potenza, J.J. Fremer, &; W. Ward (Eds.), Computer-based testing: Building the foundation for future assessments(pp. 237-266). Hillsdale, NJ: Lawrence Erlbaum Associates. Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,461-464. Sclove, L. S. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333-343. Tatsuoka, K. K., &; Tatsuoka, M. M. (1980). A model for incorporating responsetime data in scoring achievement tests. In D. J. Weiss (Ed.), Proceedings of the 1979 Computerized Adaptive Testing Conference (pp. 236-256). Minneapolis: University of Minnesota, Department of Psychology, Psychometric Methods Program. van der Linden, W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181-204. van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287-308. van der Linden, W. J., Scrams, D. J., &; Schnipke, D. L. (1999). Using response-time constraints to control for differential speededness in computerized adaptive testing. Applied Psychological Measurement, 23, 195-210. von Davier, M., &; Carstensen, C. H. (2007). Multivariate and Mixture Distribution Rasch Models. New York, NY: Springer. Wang, T., &; Hanson, B. A. (2005). Development and calibration of an item response model that incorporates response time. Applied Psychological Measurement, 29(5), 323-339. Wise, S. L., &; DeMars, C. E. (2006). An application of item response time: The effort-moderated IRT model. Journal of Educational Measurement, 43(1), 19-38. Wise, S. L., &; Kong, X. J. (2005). Response time effort: A new measure of examinee motivation in computer-based tests. Applied Measurement in Education, 16, 163-183.
|