(3.230.76.48) 您好!臺灣時間:2021/04/11 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊憶華
研究生(外文):Yi-Hua Yang
論文名稱:台灣東北部海域三種糯鰻之年齡、成長及生殖生物學研究
論文名稱(外文):Age, growth and reproduction of three conger eel species in the waters off Northeastern Taiwan
指導教授:陳鴻鳴陳鴻鳴引用關係王佳惠王佳惠引用關係
指導教授(外文):Hong- Ming ChenChia-Hui Wang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:60
中文關鍵詞:糯鰻耳石微化學生殖生物成長
外文關鍵詞:conger eelotolithmicrochemistryreproductiongrowth
相關次數:
  • 被引用被引用:2
  • 點閱點閱:305
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
深海糯鰻為底棲性的魚類,棲息在200~400公尺的砂泥底質,廣泛分布於台灣海域,但有關其初期生活史、年齡成長及生殖生物學之研究仍舊缺乏。鰻形目魚類在成長過程中經歷了胚胎期、柳葉形漂浮期、稚魚期與成魚期等複雜的生理改變,以及深海與淺海的棲地變化,不管在生理或是環境轉變的過程,都會反應在耳石微量元素的組成中。本研究為了瞭解台灣東北部深海糯鰻的生活史歷程,自2011年8月至2012年9月,每月赴宜蘭大溪、南方澳採集底拖漁獲,並針對三種深海糯鰻:瓦氏深海糯鰻(Bathycongrus wallacei) 、異頷吻糯鰻(Gnathophis heterognathos)、狹尾糯鰻(Uroconger lepturus)。首先利用掃描式電子顯微鏡,定義出糯鰻耳石的核心(Core)、轉變區(transition zone)、複核心(accessory growth centre)的範圍及日輪特徵,並計算出變態期時間,瓦氏深海糯鰻為123 ~173天,異頷吻糯鰻為103 ~ 133天,狹尾糯鰻則為84 ~ 128天。另外,由邊緣成長率分析得知,糯鰻耳石年輪之暗帶形成期為1~2月份,年輪形成週期為一年一輪,故根據耳石年輪分析,進一步推算糯鰻年齡及年間成長率,套入范氏成長方程式估算成長參數,得知瓦氏深海糯鰻為L∞ = 1161.90 mm,k = 0.02 yr-1,t0 = -4.85 yrs;異頷吻糯鰻為L∞ = 886.60 mm,k = 0.03 yr-1,t0 = -2.76 yrs;狹尾糯鰻為L∞ = 748.37 mm,k = 0.02 yr-1,t0 = -5.82 yrs。最後並利用電子微探分析儀 (Electron Prob Microanalyzer, EPMA) 探討耳石上鍶鈣比 (Sr / Ca) 的變化。結果發現,三種糯鰻的鍶鈣比在不同時期皆有顯著差異性,胚胎期的鍶鈣比最高,在柳葉魚漂浮期時顯著的下降,爾後的稚魚期到成魚期則無顯著差異。由此可知深海糯鰻在初期的生理轉變,會導致耳石鍶鈣比顯著下降。而稚魚期之後鍶鈣比不再有劇烈變化,是因為深海糯鰻長期在海裡生活沒有洄游到淡水河口的行為。本研究採樣期間瓦氏深海糯鰻之雌性比為55 %、異頷吻糯鰻為66 %、狹尾糯鰻為46 %。根據生殖腺指數、生殖腺外觀及組織切片觀察分析結果,推估三種糯鰻生殖季皆為每年8月至10月。最小性成熟體長雌性分別為339.0 mm、328.4 mm、343.5 mm;雄性分別為356.4 mm、254.7 mm、309.5 mm。我們希望本研究結果未來可以提供做為糯鰻基礎資料及漁業資源保育。
Conger eel is a demersal fish, living in sandy benthic area at depth from 200 to 400 m, and distributing widely in Taiwan coastal waters. Little is known about the fundamental biology of conger eel, including their early life history, age, growth and reproduction. Conger eel experiences different habitats with a varied depth range during ontogenetic stages, including embryonic, pelagic leptocephalus, juvenile and adult stages. Both physiological and environmental changes will be recorded in otolith trace elemental composition. Present study aimed to investigate the life history of conger eel in the northeastern Taiwan. Monthly samples including Bathycongrus wallacei, Gnathophis heterognathos, and Uroconger lepturus were collected from August 2011 to September 2012 from Daxi and Nanfangao fishing harbor. First, the core, transition zone and accessory growth centre were defined by using scanning electron microscope. Durations of metamorphoses were estimated to be, 123 ~ 173 days for B. wallacei, 103 ~133 days for G. heterognathos, and 84 ~ 128 days for U. lepturus by analyzing otolith daily groth increment. The monthly change of the marginal increment ratio indicated that opaque zones on otolith were formed during January and February and the annulus is formed yearly. Yearly age and growth rate were calculated from otolith and data were fitted to von Bertalanffy growth equation. The growth parameters for B. wallacei is L∞ = 886.60 mm, k = 0.03 yr-1, t0 = - 2.76 yrs; G. heterognathos is L∞ = 886.60 mm, k = 0.03 yr-1, t0 = - 2.76 yrs; and U. lepturus is L∞ = 748.37 mm, k = 0.02 yr-1, t0 = - 5.82 yrs. Electron Prob Microanalyzer (EPMA) were used to analyze otolith Sr:Ca ratios of the three conger eels. The result of the Sr:Ca ratio was significantly variated at different life stage of the three eels, with highest ratio at embryonic stage, gradually decreasing at leptocephalus, and remaining constantly low during juvenile and adult stages. Physiology change during early life stage caused the fluctuating in otolith Sr:Ca ratio, and the constantly low Sr:Ca ratios after juvenile stage indicated that the conger eel did not migrate to estuary or fresh water. The female sex ratio is 55% for B. wallacei, 66% for G. heterognathos and 46% for U. lepturus. Spawning season was estimated to be from August to October based on gonadosomatic index, appearance of gonads and histological examination of gonads. Minimum length of maturation of females are 339.0 mm, 328.4 mm, and 343.5 mm, and males are 356.4 mm, 254.7 mm, 309.5 mm for B. wallacei, G. heterognathos, and U. lepturus respectively. We will hope the results of this study can provide conger eels basic information and conservation of fisheries resources in the future.
目錄
謝辭 i
摘要 ii
Abstract iii
目錄 iv
壹、前言 1
一、糯鰻 1
二、魚類年齡形質的判定 1
三、耳石在魚類成長模式的應用 2
四、耳石的其他應用與研究 2
五、魚類的生殖生物學 3
六、糯鰻科魚類的研究回顧 3
七、研究動機與目的 4
貳、材料與方法 6
一、採樣設計與生物測定 6
二、耳石微細構造及輪紋判定 6
1.耳石 6
2.糯鰻初期生活史之日輪判讀 7
3.年輪判讀 7
三、耳石的微化學分析 8
四、生殖生物學分析 9
1.生殖腺外觀察 9
2.生殖腺指數 (Gonadosomatic index, GSI) 9
3.50 %成熟體長 9
4.性別比例 9
5.生殖腺組織石蠟切片 9
6.計算產卵數 10
五、資料處理與分析 10
參、結果 11
一、樣本基本組成 11
1.樣本收集結果 11
2.體長體重性別組成 11
3.耳石外觀 11
4.初期生活史 11
二、耳石定齡 12
1.邊緣成長率 12
2.讀輪精確度 12
3.成長方程式 12
.三、耳石上的微化學 12
四、生殖生物學 13
1.卵巢組織切片 13
2.卵巢生殖腺外觀 14
3.精巢組織切片 14
4.雌性比 14
5.生殖腺指數 14
6.成熟頻度曲線 14
7.生殖季節 15
8.孕卵數(fecundity) 15
肆、討論 17
一、初期生活史 17
二、輪紋形成周期 18
三、讀輪精確度 18
四、年齡成長 18
五、耳石上的微化學 19
六、性比 20
七、產卵季節 20
八、結論 21
參考文獻 22
表一、瓦氏深海糯鰻Bathycongrus wallacei,、異頷吻糯鰻Gnathophis heterognathos和狹尾糯鰻 Uroconger lepturus雌雄樣本之測量。 27
表二、 瓦氏深海糯鰻Bathycongrus wallacei體長別性別比例之卡方分布檢定。 28
表三、異頷吻糯鰻Gnathophis heterognathos體長別性別比例之卡方分布檢定。 29
表四、狹尾糯鰻Uroconger lepturus體長別性別比例之卡方分布檢定。 30
表五、台灣東北部三種糯鰻和其他鰻形目變態期時間之比較。 31
圖一、三種糯鰻之標本照。 32
圖二 、瓦氏深海糯鰻(Bathycongrus wallacei)左邊三對耳石之外觀形態。 33
圖三 、耳石內側面表面照。 34
圖四 、耳石表面光刻蝕照。 35
圖五、狹尾糯鰻 (Uroconger lepturus)卵巢生殖腺外觀五個階段。 36
圖六、狹尾糯鰻(Uroconger lepturus)精巢生殖腺外觀。 37
圖七、異頷吻糯鰻(Gnathophis heterognatho)耳石表面之掃描式電子顯微鏡照。 38
圖八、異頷吻糯鰻(Gnathophis heterognatho)掃描式電子顯微鏡耳石表面照。 39
圖九 、狹尾糯鰻(Uroconger lepturus)掃描式電子顯微鏡耳石表面照。 40
圖十、各月份之邊緣成長率。 41
圖十一、瓦氏深海糯鰻(Bathycongrus wallacei)耳石讀輪年齡別誤差圖。 42
圖十二、異頷吻糯鰻(Gnathophis heterognatho)耳石讀輪年齡別誤差圖。 43
圖十三、狹尾糯鰻(Uroconger lepturus)耳石讀輪年齡別誤差圖。 44
圖十四、三種糯鰻之成長曲線圖。 45
圖十五、瓦氏深海糯鰻 (Bathycongrus wallacei) 耳石核心到邊緣Sr / Ca。 46
圖十六、異頷吻糯鰻(Gnathophis heterognatho)耳石核心到邊緣Sr / Ca。 47
圖十七、狹尾糯鰻(Uroconger lepturus)耳石核心到邊緣Sr / Ca。 47
圖十八、狹尾糯鰻(Uroconger lepturus)卵巢之染色質核仁期 (Chromatin nucleolar stage)。 49
圖十九、狹尾糯鰻(Uroconger lepturus)卵巢之周邊核仁期 (Peri-nucleolar stage)。 49
圖二十、狹尾糯鰻(Uroconger lepturus)卵巢之卵黃泡期(Yolk vesicle stage)。 50
圖二十一、狹尾糯鰻(Uroconger lepturus)卵巢之卵黃生成前期 (Early vitellogenic stage)。 50
圖二十二、狹尾糯鰻(Uroconger lepturus)卵巢之卵黃生成後期(Late vitellogenic stage)。 51
圖二十三、狹尾糯鰻(Uroconger lepturus)卵巢之完熟期(Maturation stage)。 51
圖二十四、異頷吻糯鰻(Gnathophis heterognatho)卵巢之空泡期(Empty follicles stage)。 52
圖二十五、糯鰻精細胞之各發育階段。 53
圖二十六、十四個月份三種糯鰻雌性個體GSI平均值之變動情形。 54
圖二十七、十四個月份三種糯鰻雄性個體GSI平均值之變動情形。 55
圖二十八、瓦氏深海糯鰻Bathycongrus wallacei之體長-成熟頻度曲線 (Logistic)。 56
圖二十九、異頷吻糯鰻Gnathophis heterognathos之體長-成熟頻度曲線 (Logistic)。 57
圖三十、狹尾糯鰻Uroconger lepturus之體長-成熟頻度曲線 (Logistic)。 58
圖三十一、糯鰻卵巢外觀成熟比月別變化。 59
附錄一 生殖腺樣本處理過程:去蠟、染色、封片 60


Amiel, A. J., G. M. Friedman and D. S Miller. 1973. Distribution and nature of incorporation of trace elements in modern aragonite corals. Sedimentology, 20: 47-64.
Arai, T. and N. Chino. 2012. Diverse migration strategy between freshwater and seawater habitate in the freshwater eel genus Augulla. Journal of Fish Biology, 81: 442-255.
Bauchot, M. L. and Saldanha L. 1986. Fishes of the northeastern Atlantic and the Mediterranean. UNESCO, Paris.
Balls, P., W. Cofino, D. Schmidt, G. Topping, S. Wilson and P. Yeats. 1993. ICES baseline survey of trace metals in European shelf water. ICES Journal of Marine Science, 50: 435-444.
Bell, G. W., D. A. Witting and K. W. Able. 2003. Aspects of metamorphosis and habitat use in the conger eel, Conger oceanicus. Copeia, 2003: 544–552.
Branstetter, S. and R. Stiles. 1987. Age and growth estimates of the bull shark, Carcgarhinus leucas, from the Gulf of Mexico. Environmental Biology Fishes, 20 (3): 169-181.
Bruland, K. W. 1983. Trace elements in sea-water. In: J. P. Riely &; R. Chester (eds.) Chemical Oceanography. Academic Press, NY, 8: 157-220.
Campana, S. E., M. C. Annand and J. I. McMillan. 1995. Graphical and statistical methods for determining the consistency of age determination. Transactions of the American Fisheries Society, 124: 131-138.
Campana, S. E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263-297.
Campana, S. E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59: 197-242.
Cieri, M. D. and J. D. McCleave. 2000. Discrepancies between otoliths of larvae and juveniles of the American eel: is something fishy happening at metamorphosis? Journal of Fish Biology, 57: 1189-1198.
Correia, A. T., C. Antunes, J. Coimbra. 2002. Aspects of the early life history of the European conger eel (Conger conger) inferred from the otolith microstructure of metamorphic larvae. Marine Biology, 140: 165-173.
Correia, A. T., C. Antunes, E.J. Isidro and J. Coimbra. 2003. Changes in otolith microstructure and microchemistry during larval development of the European conger eel (Conger conger ) Marine Biology, 142: 777-789.
Correia, A. T., K. W. Able, C. Antunes and J. Coimbra. 2004. Early life history of the American conger eel (Conger oceanicus) as revealed by otolith microstructure and microchemistry of metamorphosing leptocephali. Marine Biology, 145: 477-488.
Correia, A. T., C. Antunee, J. M. Wilson and J. Coimbra. 2006. An evaluation of the otolith characteristics of Conger conger during metamorphosis. Journal of Fish Biology, 68: 99-199.
Correia, A. T., S. Manso and J. Coimbra. 2009. Age, growth and and reproductive biology of the European conger eel (Conger conger) from the Atlantic Iberian waters. Fisheries Research, 99: 196-202.
Correia, A. T., F. Barros and A.N. Sial. 2011. Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fisheries Research, 108 (1): 88-94.
Fey, D. P. 2001. Differences in temperature conditions and somatic growth rate of larval and early juvenile spring-spawned herring from the Vistula Lagoon, Batltic Sea manifested in the otolith to fish size relationship. Journal of Fish Biology, 58: 1257-1273.
Horie, N., T. Utoh, Y. Yamada, A. Okamura, H. Zhang, N. Mikawa, A. Akazawa,, S. Tanaka and H. Poka. 2002. Development of embryos and larvae in the common Japanese conger Conger myriaster. Fisheries Science, 68: 972–983.
Kaiser, M. J., J. S. Collie, S. J. Hall, S. Jennings, and I. R. Poiner. 2002. Modification of marine habitats by trawling activities : prognosis and solutions. Fish and Fishies, 3: 114-136.
Kalish, J.M., 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology, 132: 151-178.
Kume, G., Y. Kubo, T. Yoshimura, T. Kiriyama and A. Yamaguchi. 2010. Life history characteristics of the protogynous parrotfish Calotomus japonicas from northwest Kyushu, Japan. Ichthyological Research, 57: 113-120.
Lee, T. W. and J. S. Byun. 1996. Microstructural growth in otoliths of conger eel (Conger myriaster) leptocephali during the metamorphic stage. Marine Biology, 125: 259-268.
Lin, Y.- J., Y. Iizuka and W.- N. Tzeng. 2005. Decreased Sr/Ca ratios in the otoliths of two marine eels, Gymnothorax reticularis and Muraenesox cinereus, during metamorphosis. Marine Ecology Progress Series, 304: 201-206.
Lin,Y.-J. and W.-N. Tzeng. 2009. Validation of annulus in otolith and estimation of growth rate for Japanese eel Anguilla japonica in tropical southern Taiwan. Environmental Biology of Fishes, 84: 79-87.
Lin, Y.-J., S. Y. Özdilek, Y. Iizuka, A. GÜMÜ and W.- N. Tzeng. 2011. Migratory life history of European eel Anguilla anguilla from freshwater regions of the River Asi, southern Turkey and their high otolith Sr:Ca ratios. Journal of Fish Biology, 78: 860-868.
Lythgoe, J. and G. Lythgoe. 1971. Fishes of the sea: the coastal waters of the British Isles, northern Europe and the Mediterranean. Blandford Press, London.
Macdonald, J. I. and D. A. Crook . 2010. Variability in Sr : Ca and Ba : Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marin Ecology Progress Series, 413: 147-161.
Marohn, L., E. Prigge, K. Zumholz, A. Klügel, H. Anders and R. Hanel. 2009. Dietary effects on multi-element composition of European eel (Anguilla anguilla) otoliths. Marine Biology, 156: 927–933.
Marohn, L., V. Hilge, K. Zumholz, A. Klügel, H. Anders and R. Hanel. 2011. Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths. Analytical and Bioanalytical Chemistry, 399: 2175–2184.
Marui, M., T. Arai, M. J. Miller, D. J. Jellyman and K. Tsukamoto. 2001. Comparison of early history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructureand microchemistry. Marine Ecology Progress Series, 213: 273-284.
Nanami, A., T. Kurihara, Y. Kurita, Y. Aonuma, N. Suzuki and H. Yamada. 2010 a. Age, growth and reproduction of the humpback red snapper Lutjanus gibbus off Ishigaki Island, Okinawa. Ichthyological Research, 57: 240-244.
Nanami, A., K. Okuzawa, H. Yamada, N. Suzuki, H. Suzuki and Y. Aonuma. 2010 b. Reproductive activity in the checkered snapper, Lutjanus decussatus, off Ishigaki Island, Okinawa. Ichthyological Research, 57: 314-318.
Nelson, J. S. 2006. Fishes of the World, 4th edition. John Wiley &; Sons, Inc. Hoboken, New Jersey, 601pp.
Oliveira, A. M., M. Farina, I. P. Ludka and B. Kachar. 1996. Vaterite, calcite and aragonite in the otoliths of three species of piranha. Naturwissen, 83: 133-135.
Otake, T., T. Ishii, M. Nakahara and R. Nakamura. 1997. Changes in otolith strontium: calcium ratios in metamorphosing Conger myrisaster leptocephali. Marine Biology, 128: 565-572.
Panfili, J., H. Pontual, H. Troadec and P. L. Wright. 2002. Manual of fish sclerochronology. Brest, France.463 pages.
Pannella, G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science, 173: 1124-1127.
Pontual, H., F. Lagardère, R. Amara, M. Bohn and A. Ogor. 2003. Influence of ontogenetic and environmental change in the otolith microchemistry of juvenile sole (Solea solea). Journal of Sea Research, 50: 199-210.
Randall, J. E., R. G. Allen and R. C. Steene. 1990. Fishes of the great barrier reef and coral sea. University of Hawawaii Press Honolulu, 46pp.
Reibisch, R. L. 1988. Recruitment parameters resolved from structural and chemical components of juvenile Dascyllus albisella otoliths. Proceedings of the 6th International Coral Reef Symposium, 2: 821-826.
Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fishes of the Pacific coast of Canada, 191, 382 p.
Sarimin, A. S., M. A. Ghaffar and C. A. R. Mohamed. 2009. Variation of Ca, Sr, Ba and Mg in the otolith of mudskipper in West Coast of Peninsular Malaysia. Pakistan Journal of Biological Sciences, 12 (3): 231-238.
Smith, D. G. 1999. Congridae. pp. 1680-1687 in K. E. Carpenter and V. H. Niem, eds. FAO Species Identification Guide for Fishery Purposes – The living marine resources of the Western Central Pacific. Volume 3. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome.
Smith, C. J., K. N. Papadopoulou, and S. Diliberto. 2000. Impact of otter trawling on an eastern Mediterranean commercial trawl fishing ground. ICES Journal of Marine Science, 57: 1340 -1351.
Sullivan, S. O., C. Moriarty, R. D. Fitzgerald, J. Davenport and M. F. Mulcahy. 2003. Age, growth and reproductive status of European conger eel, (Conger conger L.) in Irish coastal waters. Fisheries Research, 64: 55-69.
Tabeta, O., K. Tanaka, J. Yamada and W. N. Tzeng. 1987. Aspects of the early life history of the Japanese eel Anguilla japonica determined from otolith microstructure. Nippon Suisan Gakkaishi 53: 171-172.
Tanner, S. E., R. P. Vasconcelos, P. R. Santos, H. N. Cabral and S. R. Thorrold. 2011. Spatial and ontogenetic variability in the chemical composition of juvenile common sole (Solea solea) otoliths. Estuarine, Coastal and Shelf Science 91: 150-157.
Tesch, F.-W. 2003. The Eel.Third edition. Gray Publishing Tunbridge Wells Kent. 175pp.
Tzeng, W.- N., C.-W. Chang, C-H. Wang, J.- C. Shiao, Y. Iizuka, Y. J. Yang, C.- F. You and L. Ložys. 2007. Misidentification of the migratory history of anguillid eels by Sr / Ca ratios of vaterite otoliths.Marine Ecology Progress Series, 348: 285-295.
王律棚。2007。台灣疊波蓋刺魚之生活史研究。國立東華大學海洋生物多樣性及演化研究所碩士論文。72頁。
朱祥海。1997。魚類學。水產出版社,基隆。574頁。
沈世傑 等。2004。脊椎動物百科全書¬-魚類 (第一冊)。國立編譯館。台北。452頁。
林志晟。2010。台灣東北部海域六橫斑擬鱸生殖生物學研究。國立臺灣海洋大學環境生物與漁業科學學系碩士論文。69頁。
林巧雯。2011。台灣北部沿岸水域軟絲鎖管之成長與成熟。國立臺灣海洋大學海洋事務與資源管理研究所碩士論文。66頁。
陳兼善、于明振。1986。臺灣脊椎動物誌 (上冊)。臺灣商務印書館發行,臺灣,臺北,第250¬¬-253頁。
陳文魁。2005。台灣龜山島周邊海域產扁魚類多樣性及優勢種五眼斑之生殖生物學研究。國立臺灣海洋大學海洋資源管理研究所碩士論文。67頁。
張政富。2009。台灣東部海域唇斑裸胸鯙之年齡、成長及生殖生物學研究。國立臺灣海洋大學水產養殖研究所碩士論文。66頁。
張詠絮。2011。台灣海域糯鰻(鰻形目: 糯鰻科)之分類研究。國立臺灣海洋大學水產養殖研究所碩士論文。140頁。
楊承哲。2010。台灣東北部海域囊頭鮋年齡與成長之研究。國立臺灣海洋大學環境生物與漁業科學學系碩士論文。80頁。
歐秋屏。2007。台灣東部海域黴身及白斑裸胸鯙之生殖生物學研究。國立臺灣海洋大學水產養殖研究所碩士論文。107頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔