(3.215.77.193) 您好!臺灣時間:2021/04/17 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):Yi-Jyun Lin
論文名稱:石蓴對南美白對蝦於不換水養殖之水質淨化能力
論文名稱(外文):Water Purification Capacity of Ulva fasciata in zero-exchange system of White Shrimp (Litopenaeus vannamei)
指導教授:陳瑤湖陳瑤湖引用關係
指導教授(外文):Yew-Hu Chien
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:97
中文關鍵詞:石蓴白蝦魚菜共生總氨氮水質
外文關鍵詞:Ulva fasciatawhite shrimpaquaponicsTotal Ammonia-Nitrogenwater quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的探討於不換水養殖下,何種密度之白蝦所產生之氮化物可供何種密度之石蓴成長,及何種密度之石蓴能淨化何種密度之白蝦所產生之氮化物,以及如何有效使氮化物於白蝦與石蓴間達成平衡,甚至於何種密度之白蝦與石蓴下,能使水質與其成長達最佳化為此研究所探討之重點。
本試驗設計五組試驗,模擬石蓴於不換水養殖對白蝦之水質淨化能力,分別為:試驗一、探討不同白蝦密度於不換水養殖之產氨率;試驗二、探討不同石蓴密度對無機氮之淨化能力;試驗三、探討不同石蓴密度對不同殘餌量之淨化能力;試驗四、探討不同石蓴密度對不同養蝦廢水濃度之淨化能力;試驗五、探討不同石蓴與白蝦密度於不換水養殖對氮化物之影響。
白蝦密度為1、5、10尾 ( 平均重為5.00±0.01 g ),水體容積為10 L。S1、S5與S10處理組於一週後,TAN濃度從0.01、0.01、0.01 mg L-1,分別上升至1.18、8.82與17.86 mg L-1。白蝦密度於0.5、2.5與5 g L-1,產氨率為0.03、0.05與0.05 mg L-1 g-1 D-1。
石蓴密度為1、5、10、15 g,無機氮試水之TAN濃度為0、1、5、10 mg L-1,水體容積為10 L。U1、U5、U10與U15於一週後,TAN從4.45、4.44、4.38與4.51 mg L-1,分別下降至2.99、1.63、0.91與0.39 mg L-1。石蓴密度於0.1、0.5、1.5與1 g L-1,對無機氮試水之TAN降低率為2.21、4.01、4.95與5.89 % D-1。
石蓴密度為0、2、4、8 g,殘餌量為0.5、1、5、10 g,水體容積為10 L。F0.5、F1、F5與F10於一週後,TAN濃度從0.15、0.15、0.15與0.15 mg L-1,分別上升至1.64、2.08、4.10與5.52 mg L-1。殘餌量在0.05、0.1、0.5與1 g L-1,產氨率為0.21、0.28、0.56與0.77 mg L-1 g-1 D-1。U2、U4與U8於一週後,TAN濃度從0.15、0.15與0.15 mg L-1,分別上升至2.21、1.94與1.46 mg L-1。石蓴密度為0.2、0.4與0.8 g L-1,對有機廢水之TAN增加率為2.56、2.94與1.87 % D-1。
石蓴密度為2、4、8 g,養蝦廢水濃度為100、80、40 %,水體容積為10 L。U2、U4與U8於一週後,TAN濃度從0.53、0.52與0.52 mg L-1,分別降低至0.50、0.16與0.05 mg L-1。石蓴密度為0.2、0.4與0.8 g L-1,對養蝦廢水之TAN降低率為0.04、0.52與0.67 % D-1。
石蓴與白蝦於不換水養殖下,白蝦密度為2、4、8尾,石蓴密度為2、4、8 g,水體容積為10 L。石蓴能轉換廢水提供之營養鹽供自身成長,使藻體含氮量增加。實驗結果以白蝦密度為1.25 g L-1與石蓴密度為0.2 g L-1下,可達水質與成長最佳化。

This aim of this study was to determine the optimum growth, water purification and nitrogenous waste balance of Litopenaeus vannamei (white shrimp) and Ulva fasciata cultivated at different stocking density in zero-exchange system.
Five experiments were conducted, which stimulated the capacity of Ulva fasciata to clarify the water in the zero-exchange system. Exp 1, determined the ammonia production rate of white shrimp in the zero-exchange system. Exp 2, determined the clarification capacity of Ulva fasciata on inorganic nitrogen in different densities. Exp 3, determined the clarification capacity of Ulva fasciata on the amount of feeding rate in different densities. Exp 4, determined the clarification capacity of Ulva fasciata on the shrimp farming wastewater in different densities. Exp 5, determine the effect of nitrogenous waste in different densities of Ulva fasciata and white shrimp in zero-exchange system.
In Exp. 1, the shrimp of 5.00 ± 0.01 g were reared in 9 tanks of 10 L of capacity at a stocking densites of 1, 5 and 10. Treatments of shrimp with three replicates. After a week, in S1, S5 and S10, the total ammonia concentration (TAN) increased from 0.01, 0.01 and 0.01 mg L-1 to 1.18, 8.82 and 17.86 mg L-1, respectively. The ammonia production rate of white shrimp in the densities of 0.5, 2.5 and 5 g L-1 were 0.03, 0.05 and 0.05 mg L-1 g-1 D-1, respectively.
In Exp. 2, Ulva fasciata were reared in 32 tanks of 10 L of capacity at a stocking densities of 1, 5 ,10 and 15 g. TAN concentration of inorganic nitrogen testing water were 0, 1, 5 and 10 mg L-1. Treatments of Ulva fasciata and inorganic nitrogen concentration with two replicate. After a week, in U1, U5, U10 and U15, TAN reduced from 4.45, 4.44, 4.38 and 4.51 mg L-1 to 2.99, 1.63, 0.91 and 0.39 mg L-1, respectively. The degradation of TAN of inorganic nitrogen testing water in the densities of Ulva fasciata of 0.1, 0.5, 1.5 and 1 g L-1 were 2.21, 4.01, 4.95 and 5.89 % D-1, respectively.
In Exp. 3, Ulva fasciata were reared in 32 tanks of 10 L of capacity at a stocking densities of 0, 2 ,4 and 8 g. Feeding rate were 0.5, 1, 5 and 10 mg L-1. Treatments of Ulva fasciata and feeding rate with two replicate. After a week, in F0.5, F1, F5 and F10, TAN increase from 0.15, 0.15, 0.15 and 0.15 mg L-1 to 1.64, 2.08, 4.10 and 5.52 mg L-1 , respectively. The ammonia production rate were 0.21, 0.28, 0.56 and 0.77 mg L-1 g-1 D-1 in the amount of feeding rate of 0.05, 0.1, 0.5 and 1 g L-1, respectively. After a week, in U2, U4 and U8, TAN increased from 0.15, 0.15 and 0.15 mg L-1 to 2.21, 1.94 and 1.46 mg L-1, respectively. The degradation of TAN of organic waste water in the densities of 0.2, 0.4 and 0.8 g L-1 were -2.56, -2.94 and -1.87 % D-1
In Exp. 4, Ulva fasciata were reared in 18 tanks of 10 L of capacity at a stocking densities of 2, 4 and 8 g. Shrimp farming wastewater were 100, 80 and 40 %. Treatments of Ulva fasciata and shrimp farming wastewater with two replicate. After a week, in U2, U4 and U8, TAN reduced from 0.53, 0.52 and 0.52 mg L-1 to 0.50, 0.16 and 0.05 mg L-1, respectively. The concentration of Ulva fasciata were 0.2, 0.4 and 0.8 g L-1. The degradation rate of TAN of shrimp farming wastewater were 0.04, 0.52 and 0.67 % D-1.
In Exp. 5, Ulva fasciata and white shrimp under the zero-exchange system, the shrimp were reared in 18 tanks of 10 L of capacity at the stocking densities of 2, 4 and 8, and Ulva fasciata were 2, 4 and 8 g. Treatments of shrimp and Ulva fasciata with two replicate. Ulva fasciata enable the absorption of nutrient from waste water which increase the nitrogen of Ulva fasciata. These results shows that the densities of white shrimp and Ulva fasciata that could achieve the optimum water quality level and growth were 1.25 g L-1 and 0.2 g L-1, respectively,

謝辭 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 x
略語表 xiii
前言 1
一、魚菜共生系統 1
二、養殖池中氨氮來源與蝦類之排氮 1
三、海藻對氨氮之吸收作用 2
四、研究目的 2
文獻回顧 3
一、白蝦 ( Litopenaeus vannamei ) 3
二、白蝦對水質環境之需求 3
三、石蓴 ( Ulva fasciata ) 4
四、氨之生成途徑 4
五、氨之性質及毒性機制 5
六、亞硝酸之性質及毒性機制 5
七、硝酸之性質及毒性機制 6
材料方法 7
一、試驗設計 7
1-1 不同白蝦密度於不換水養殖之產氨率 7
1-2 不同石蓴密度對無機氮之水質之淨化能力 7
1-3 不同石蓴密度對不同殘餌量之水質之淨化能力 7
1-4 不同石蓴密度對不同濃度養蝦廢水之水質之淨化能力 7
1-5 不同石蓴與白蝦密度於不換水養殖對氮化物之影響 8
二、試驗動物 8
三、試驗飼料 8
四、養殖系統 8
4-1不同白蝦密度於不換水養殖之產氨率 8
4-2不同石蓴密度對無機氮之水質之淨化能力 8
4-3不同石蓴密度對不同殘餌量之水質之淨化能力 9
4-4不同石蓴密度對不同濃度養蝦廢水之水質之淨化能力 9
4-5不同石蓴與白蝦密度於不換水養殖對氮化物之影響 9
五、試驗分析方法 9
5-1 酸鹼值 ( pH ) 9
5-2 總氨氮 ( Total Ammonia-Nitrogen, TAN ) 9
5-3 亞硝酸氮 ( Nitrite-N, NO2-N ) 10
5-4 硝酸氮 ( Nitrate-N, NO3-N ) 10
5-5 粗蛋白質分析 10
5-6 試驗參數 10
六、統計分析 11
結果 12
一、不同白蝦密度於不換水養殖之產氨率 12
1-1 白蝦密度對水質之影響 12
1-2 時間對白蝦密度之水質影響 12
1-3 白蝦成長率與產氨率 13
二、不同石蓴密度對無機氮之水質淨化 13
2-1 無機氮濃度、石蓴密度與時間對水質之影響 13
2-2 石蓴於無機氮水養殖,時間對無機氮濃度及石蓴密度之水質影響 13
2-3 石蓴成長率與氨降低率 14
2-4 總氨氮模式 14
三、不同密度石蓴對不同殘餌量之水質淨化 14
3-1 殘餌量、石蓴密度與時間對水質之影響 14
3-2 石蓴於有機廢水養殖,時間對殘餌量及石蓴密度之水質影響 15
3-3 殘餌氨增加率與石蓴成長率及氨降低率 15
3-4 總氨氮模式 16
四、不同密度石蓴對不同濃度之養蝦廢水水質淨化 16
4-1 養蝦廢水濃度、石蓴密度與時間對水質之影響 16
4-2 石蓴於養蝦廢水養殖,時間對養蝦廢水濃度及石蓴密度之水質影響 16
4-3 石蓴成長率及氨降低率 17
4-4 總氨氮模式 17
五、不同石蓴與白蝦密度於不換水養殖對氮化物之影響 18
5-1 白蝦密度、石蓴密度與時間對水質之影響 18
5-2 蝦藻共生系統下,時間對白蝦密度及石蓴密度之水質影響 18
5-3 白蝦密度、石蓴密度與時間對成長之影響 18
5-4 蝦藻共生系統下,時間對白蝦密度及石蓴密度之成長影響 19
5-5 水質與成長參數相關性 19
5-6 白蝦密度與石蓴密度對氮含量之影響 19
5-7 最佳化之模式 19
討論 20
結論與建議 24
參考文獻 76


洪介學,2011。絲蘭萃取物在點帶石斑與紅紋笛鯛養殖之應用。國立台灣海洋大學水產養殖學系研究所碩士學位論文。

康浩琳,2006。放養密度、內置物及飼料對白蝦不換水養殖之影響。國立中山大學海洋生物科技暨資源學系碩士論文。

張碧兒,1996。不同蛋白質含量飼料對石斑魚及草蝦氮排泄之影響。國立台灣海洋大學水產養殖系研究所碩士學位論文。

謝武峰,2003。零換水生物安全性養蝦系統之研究。國立台灣海洋大學水產養殖學系研究所碩士學位論文。

Abeling, U., Seyfried, C.F., 1992. Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite. Water Science and Technology 26, 1007-1015.

Anderson, J.J., Okubo, A., Robbins, A.S., Richards, F.A., 1982. A model for nitrite and nitrate distributions in oceanic oxygen minimum zones. Deep-Sea Res 29, 1113-1140.

AOAC (Association of Official Analytical Chemists), 1984. Official Methods of Analysis, 14th edition, AOAC, Arlington, VA, 1141 pp.

Armstrong, D.A., Chippendale, D., Knight, A.W., Colt, J.E., 1978. Interaction of ionized and un-ionized ammonia on short-term survival and growth of prawn larvae, Macrobrachium rosenbergii. The Biological Bulletin 154, 15-31.

Armstrong, D.A., 1979. Nitrogen toxicity to crustacea and aspects of its dynamics in culture system. In: Lewis, D., Ling, J. (Eds.), 2nd Biennial Crustacean Health Workshop. Texax A &; M Sea Grant, Tammse-SE-79-114, 329-360 pp.

Avnimelech, Y., Lacher, M., 1979. A tentative nutrient balance for intensive fishpond. Bamidgeh 31, 3-8.

Bendscharider, K., Robinson, R. J., 1952. A new spectrometric methord for the determination of nitrite in sea water. Journal of Marine Research 11, 87-96.

Beveridge, M.C.M., Phillips, M.J., Clarke, R.M., 1991. A quantitative and qualitative assessment of wastes from aquatic animal production. In: Brune D. E. and Tomasso F. R. (Ed.). Aquaculture and Water Quality. World Aquaculture Society, Baton Rouge. LA. 506-533.

Black, K.D. (Ed.), 2001. Environmental Impacts of aquaculture. Sheffield Academic Press, Sheffield 214 pp.
Bold, H.C. and Wynne, M.J., 1985. Introduction to the Algae (Structure and Reproduction). Prentice-Hall Inc., Englewood Cliffs, New Jersey 1-720.

Boyd, C.E., 1985. Chemical budgets for channel catfish ponds. Transactions of the American Fisheries Society 114, 291-298.

Burford, M.A., Williams, K.C., 2001. The fate of nitrogenous waste from shrimp feeding. Aquaculture 198, 79-93.

Buschmann, culture A.H., Mora, O.A., Gomez, P., Bottger, M., BuITANo, S., Retamales, G., Vergara, P.A. and Gutierrez, A., 1994. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon effluents. Aquacultural Engineering 13, 283-300.

Campbell, J.W., 1991. Excretion nitrogen metabolism. In: Prosser C.L. (Ed.), Comparative Animal Environment Physiology, New York 277-324pp.

Cecen, F., 1996. Investigation of partial and full nitrification characteristics of fertilizer wastewaters in a submerged biofilm reactor. Water Science and Technology 34, 77-85.

Chen, J.C., Chen, J.M., 1997. Arginase specific activity and nitrogenous excretion of Penaeus japonicus exposed to elevated ambient ammonia. Marine Ecoiogy Progress Series Mar Ecol Prog Ser 153, 197-202.

Chen, J.C., Liu, P.C., Lin, Y.T., 1988. Super intensive culture of red-tailed shrimp Penaeus penicillatus. Journal of The World Aquaculture Society 19, 127-131.

Chen, J.C., Liu, P.C., Lin, Y.T., Lee, C.k., 1989. Highly-intensive culture study of tiger prawn Penaeus monodon in TaIWan, in: De Pauw, N. et al. (Ed.). Aquaculture, a biotechnology in progress 1, 377-382 pp.

Chen, J.C., Kou, Y.Z., 1992. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture 104, 249-260.

Chen, J.C., Tu, C.C., 1990. Acute toxicity of nitrite to larval Penaeus japonicus. Journal of The Fisheries Society of Taiwan 17, 277-287.

Cheng, S.Y., Chen, J.C., 2001. The time-course change of nitrogenous excretion in the kuruma shrimp Penaeus japonicus following nitrite exposure. Aquatic Toxicol 51, 443-454.

Chopin, T., Buschmann, A.H., Hallin, C., Troell, C., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-Gonzalez, J.A., Yarish, C., Neefus, C., 2001. Integrating seaweeds into marine aquaculture systems: a key towards sustainability. Journal of Phycol 37, 975-986.


Chopin, T., Yarish, C., Wilkes, R., Belyea, E., Lu, S., Mathieson, A., 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. Journal of Applied Phycology 11 (5), 463-472.

Cohen, I., Neori, A., 1991. Ulva lactuca biofilters for marine fishponds effluents I. Ammonia uptake kinetics and nitrogen content. Botanica Marina 34, 475-482.

Colt, J.E., Armstrong, D.A., 1981. Nitrogen toxicity to crustaceans, fish and mollusks. In: Allen L.J., Kinney E.C. (Eds.). Proceeding of Bio-Enginerring Symposium for Fish Culture, American Fisheries Society and Northeast Society of Conservation Engineer, Bethesda, MD. 34-47.

Dvir, O., Rijn, J.V., Neori, A., 1999. Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system. Marine Ecologyprogress Series 181, 97-106.

Eddy, F.B., Williams, E.M., 1987. Nitrite and freshwater fish. Chemistry and Ecology 3, 1-38.

Fenchel, T.H. and Jogensen, B.B., 1977. The food chains of aquatic ecosystems: the role of bacteria. Advances in Microbial Ecology 1, 1-58.

Fromm, P.O., Gillette, J.R., 1968. Effect of ambient ammonia on blood ammonia and nitrogen excrection of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 26B, 887-896.

Floreto, E.A.T. and Teshima S., 1998. The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Botanica Marina 41, 467-481.

Jackson, C., Preston, N., Thompson, P.J., Burford, M., 2003. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture 218, 397-411.

Jimenez del Rio, M., Ramazanov, Z., Garcia-Reina, G., 1996. Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia 326-327, 61-66.

Jimenez-Montealgegre, R., 2001. Nitrogen transformation and fluxes in fish ponds: a modeling approach. PH. D. Dissertation, Wageningen University. The Netherlands 185 pp.

Jones, A.B., Dennison, W.C., Preston, N.P., 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193, 155-178.

Jones, A.B., Preston, N.P. and Dennison, W.C., 2002. The efficiency efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquaculture Res. 33, 1-19.
Khoi, L.V. and Fotedar, R., 2011. Integration of western king prawn (Penaeus latisulcatus Kishinouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture 322-323, 201-209.

Krom, M.D., Ellner, S., Rijn, J.V., and Neori, A., 1995. Nitrogen and phosphorus cycling and transformations in a prototype “non-polluting” integrated mariculture system, Eilat, Israel. Marine Ecology Progress Series 118, 25-36.

Lapointe, B.E., Tenore, K.R., 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. Journal of Experimental Marine Biology and Ecology 53, 135-152.

Lehnberg, W., Schramm, W., 1984. Mass culture of brackish-water adapted seaweeds in sewage-enriched seawater I. Productivity and nutrient accumulation. Hydrobiologia 116-117, 276-281.

Lewis, W.M., Morris, D.P., 1986. Toxicity of nitrite to fish: a review. Transactions of the American Fisheries Society 115, 183-195.

Lin, M.N., Ting, Y.Y., Tzeng, B.S., Liu, C.Y., 1990. Penaeid parental shrimp rearing: culture of the third generation in Penaeus vannamei. Journal of The Fisheries Society of Taiwan 17, 125-132.

Liao, I.C., Huang, H.J., Katsutani, K., 1969. A preliminary report on artifical progagation on Penaeus monodon Fabricius. Journal of The Fisheries Society of Taiwan 4, 33-50.

Liao, T.C., 1984. “Status and problems of graeeprawn culture in Taiwan”, in the proceedings of ROC-Japon symposium om mariculture, Liao I.C. and Hirano R. (Ed.) (TML Conf. Proc.), Tungkang Laboratory, TungKang Pingtung Taiwan, 81-89 pp.

Liao, I. C., 1985. “A brief review of the larval rearing techniques of penaeoid prawns” in the proceeding of first international conference on culture of penaeoid prawn/shrimps, Taka Y., Primavera, J.H., Llobrera, J.A. (Ed.), Aquaculture Department, SEAFDEC, Iloilo City, Philippines, 65-78 pp.

Lin, Y.C., Chen, J.C., 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224, 193-201.

Lowe, D.M. and Clarrke, K.R., 1989. Contaminant-induced changes in the structure of the digestive epithelium of Mytilus edulis. Aquatic Toxicology 15, 345-358.

Luning, K., 2002. SEAPURA: Seaweeds purifying effluents from fish farms:An EU project coordinated by the Wadden Sea Station Sylt. Wadden Sea Newsletter 2001-2, 20-21 pp.

Nelson, S.G., Glenn, E.P., Conn, J., Moore, D., Walsh, T. and Akutagawa, M., 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture 193, 239-248.

Neori, A., Cohen, I., Gordin, H., 1991. Ulva lactuca biofilters for marine fishpond effluents II: growth rate, yield and C:N ratio. Botanica Marina 34, 483-489.

Neori, A., Chopin, T., Troell, M., Buschman, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish C., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 1-4, 361-391 pp.

Neori, A., Krom, M.D., Ellner, S.P., Boyd, C.E., Popper D., Rabinovitch, R., Davison, P.J., Dvir, O., Zuber, D., Ucko, M., Angel, D. and Gordin, H., 1996. Seaweed biofilter as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141, 183-199.

Neori, A., Ragg, N.L.C. and Shpigel, M., 1998. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquaculture Engineering 17, 215-239.

Neori, A., Shpigel, M., Ben-Ezra, D., 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186, 279-291.

Neori, A., Msuya, F.E., Shauli, L., Schuenhoff, A., Fidi, K., Shpigel, M., 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. Journal of Applied Phycology 15, 543-553.

Parry, G., 1960 . Excretion In: Waterman, T. H. (Ed.), The physiology of Crustacea. Academic press. New York I. 341-366.

Peng, Y.Z., Li, Y.Z., Peng, C.Y., Wang, S.Y., 2004. Nitrogen removal from pharmaceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification. Water Science and Technology 50 (6), 31-36.

Rakocy, J.E., Bailey, D.S., Shultz, R.C., Danaher, J.J., 2004. Fish and vegetable production in a commercial aquaponic system:25 years of research at the university of the Virgin Islands. University of the Virgin Islands, Agricultural Experiment Station, RR 1, Box 10000, Kingshill, VI 00850 USA.

Regnault, M., 1987. Nitrite excretion in marine and fresh-water crustacean. Biological Reviews 62, 1-24.



Rijn, J., Shilo, M., Bejerano, T., Nizan, S., 1990. The effect of inorganic nitrogen on microorganisms and fish in fishponds, in: Sarig, S., Rosenthal, H. (Eds.), Research in Modern Aquaculture: Proceedings of the 3rd Status Seminar. Special Publication of European Aquaculture Society, vol. 11, EAS, Oostende, Belgium 3-27 pp.

Russo, R.C., Smith, C.E., Thurston, R.V., 1974. Acute toxicity of nitrite to rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 31, 1653-1655.

Ryther, J.H., Goldman, J.C., Gifford, C.E., Huguenin, J.E., Wing, A.S., Clarner, J.P., Williams, L.D., Lapointe, B.E., 1975. Physical models of integrated waste recycling-marine polyculture systems. Aquaculture 5, 163-177.

Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F.E., Neori, A., 2003. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221, 167-181.

Shpigel, M., Neori, A., Popper, D.M., Gordin, H., 1993. A proposed model for “environmentally clean” land-based culture if fish, bivalves and seaweeds. Aquaculture 117, 128-155.

Smith, D.M., Burford, M.A., Tabrett, S.J., Irvin, S.J., Ward, L., 2002. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture 207, 125-136.

Solorzano, L., 1969. Determination of ammonia in nature waters by the phenol hypochlorite method. Limnology and Oceanography, Limnol Oceanogr 14, 700-801.

Sunila, I. and Lindstrom R., 1985. The structure of the interfilamentary junction of mussel, Mytilus edulis (L.). gill and its uncoupling by copper and cadmium exposures. Comp. Biochtm. Physiol 81 C, 267-272.

Sze, P., 1993. Green algae:(Division Chlorophyta). In Kane K., Kemp M. J. and Klein J. (Eds.). A biology of the algae 35-82 pp.

Tabata, K., 1962. Suisan dobutsh nioyobosu ammonia no dokusei to pH, tansan to no Kankei. (Toxicity of ammonia to aquatic animals with reference to the effect of pH and carbon dioxide). Tokaiku Suisan Kenkyusho Kenkyu Hokoku 34, 67-74.

Thakur, D.P., Lin, C.K., 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering 27, 159-176.

Tsai, S.J., Chen, J.C., 2002. Acute toxicity of nitrate on Penaeus monodon juveniles at different salinity levels. Aquaculture 213, 163-170.


Tomasso, J.R., 1994. Toxicity of nitrogenous wastes to aquaculture animals. Reviews in Fisheries Science 24, 291-314.

Troell, M, Halling, C, Neori, A, Chopin, T, Buschmann, A.H., Yarish, C., Kautsky, N., Yarish, C., 2003. Integrated mariculture: asking the right questions. Aquaculture 226, 69-90.

Troell, M., Kautsky, N. and Folke, C., 1999. Applicability of integrated coastal aquaculture system. Ocean Coastal Management 42, 63-69.

Troell, M., Halling, C., Nilsson, A., Buschmann, A.H., Kautsky, N. and Kautsky, S., 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156, 45-61.

Vandermeulen, H., Gordin, H., 1990. Ammonia uptake using Ulva (Chlorophyta) in intensive fishpond system: mass culture and treatment of effluent. Journal of Applied Phycology 2, 363-374.

Wedemeyer, G.A., Yasutake, W.T., 1978. Prevention and treatment of nitrite toxicity in juvenile Steelhard Trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 35, 822-827.

Whitfield, M., 1974. The hydrolysis of ammonia ions in seawater-A theoretical study. Journal of the Marine Biological Association of the United Kingdom 54, 565-580.

Wong-Chong, G.M., Loehr, R.C., 1978. Kinetics of microbial nitrification: nitrite-nitrogen oxidation. Water Research 12, 605-609.

Wu, R.S.S., 1995. The environmental impacts of marine fish culture: towards a sustainable future. Marine Pollution Bulletin 31, 159-166.

Yamasaki, S., Ali, F., Hirata, H., 1997. Low water pollution rearing by means of polyculture of larvae of kuruma prawn Penaeus japonicus with a sea lettuce Ulva pertusa. Fisheries Science 63, 1046-1047.

Yorio, N.C., Goins, G.D., Kagie, H.R., 2001. Improving Spinach, Radish, and Lettuce growth under red lightemitting diodes (LEDs) with blue light supplementation. Hortscience 36(2), 380-383.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔