(3.238.88.35) 您好!臺灣時間:2021/04/11 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林原禾
研究生(外文):Yuan-He Lin
論文名稱:藻類在不同光度及溫度下吸收二氧化碳能力之評估及其生質轉換率
論文名稱(外文):Assessment of the capacity of algae fixing carbon dioxide in various light intensities and temperatures and their biomass conversion rates
指導教授:陳衍昌陳衍昌引用關係
指導教授(外文):Yean-Chang Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:藻類二氧化碳生質轉換率溫度光度
外文關鍵詞:AlgaeCarbon dioxideBiomass conversion rateTemperatureLight intensity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:320
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本研究的大型藻材料為裂片石蓴,細基龍鬚菜及厚葉馬尾藻和微藻的材料為海洋擬綠球藻,蛋白核小球藻,綠球藻及叢粒藻,將其培養在室內及室外環境下,以測試它們吸收二氧化碳的能力以及生質轉換率。以二氧化碳氣體探測器,在密閉的環境下測得空氣中二氧化碳的變化,以直接評估藻類光合作用吸收二氧化碳的速率及吸收量,並進行長時間培養量測其增重情形。結果發現厚葉馬尾藻及叢粒藻,在室外組受到溫度的影響較大,但較不受光度影響,它們的二氧化碳吸收速率室內組為厚葉馬尾藻的CO₂吸收速率為26.414 ± 2.414 mg CO₂/g/hr、叢粒藻的CO₂吸收速率為119.944 ± 19.341 mg CO₂/g/hr,其比室外組佳為厚葉馬尾藻的CO₂吸收速率為22.65 ± 3.43 mg CO₂/g/hr、叢粒藻的CO₂吸收速率為94.065 ± 14.946 mg CO₂/g/hr。相對地,裂片石蓴,細基龍鬚菜,海洋擬綠球藻,蛋白核小球藻及綠球藻,在室外組則是受到光照的影響較大,溫度反而沒影響,它們的二氧化碳吸收速率室外組為裂片石蓴的CO₂吸收速率為30.887 ± 4.123 mg CO₂/g/hr、細基龍鬚菜的CO₂吸收速率為27.627 ± 3.046 mg CO₂/g/hr、海洋擬綠球藻的CO₂吸收速率為260.436 ± 121.376 mg CO₂/g/hr、蛋白核小球藻的CO₂吸收速率為109.324 ± 1.829 mg CO₂/g/hr、綠球藻的CO₂吸收速率為132.27 ± 7.229 mg CO₂/g/hr,其比室內組佳為裂片石蓴的CO₂吸收速率為24.375 ± 1.339 mg CO₂/g/hr、細基龍鬚菜的CO₂吸收速率為12.345 ± 0.865 mg CO₂/g/hr、海洋擬綠球藻的CO₂吸收速率為105.722 ± 30.663 mg CO₂/g/hr、蛋白核小球藻的CO₂吸收速率為84.409 ± 17.593 mg CO₂/g/hr、綠球藻的CO₂吸收速率為69.773 ± 10.145 mg CO₂/g/hr。長時間培養下的裂片石蓴生質轉換率,以室內組為1 g乾重吸收244.795 ± 43.584 g CO₂比室外組為1 g乾吸收235.024 ± 33.201 g CO₂佳,而海洋擬綠球藻其生質轉換率,則是室內組為1g乾重吸收149.765 ± 75.743 g CO₂比室外組為1 g乾重吸收了127.572 ± 104.841 g CO₂佳。
三種大型藻中以室外80g / 2L培養密度下裂片石蓴的二氧化碳吸收速率最佳,而四種微藻中以室外的海洋擬綠球藻的二氧化碳吸收速率最佳。在藻類的生質轉換率則是裂片石蓴最佳。

Macroalgae materials of Ulva fasciata, Gracilaria tenuistpitata, and Sargassum crassifolium, and microalgae materials of Nannochloropsis oculata, Chlorella pyrenoidsa, Chlorococcum sp., and Botryococcus braunii were used to assess the capacity of fixing carbon dioxide, and their biomass conversion rates, at indoor and outdoor, areas respectively. In the present study, the NDIR CO2 meter was used to estimate the CO2 concentration in an algae culture closed system. Which can directly determine the capacity of algae CO2 uptaking. Those algae were cultured for a long period and then evaluated their biomass. It is found S. crassifolium and B. braunii cultivated at outdoor were affected by temperature more than light intensity. The CO2 absorption rates of indoor samples, such as S. crassifolium was 26.414 ± 2.414 mg CO₂/g/hr、B. braunii was 119.944 ± 19.341 mg CO₂/g/hr, and were better than those of outdoor samples, such as S. crassifolium was 22.65 ± 3.43 mg CO₂/g/hr、B. braunii was 94.065 ± 14.946 mg CO₂/g/hr. In contrast, outdoor samples of U. fasciata, G. tenuistpitata, N. oculata, C. pyrenoidsa, and Chlorococcum sp. were more affected by light intensity than temperature. And their CO2 absorption of U. fasciata was 30.887 ± 4.123 mg CO₂/g/hr、G. tenuistpitata was 27.627 ± 3.046 mg CO₂/g/hr、N. oculata was 260.436 ± 121.376 mg CO₂/g/hr、C. pyrenoidsa was 109.324 ± 1.829 mg CO₂/g/hr、Chlorococcum sp. was 132.27 ± 7.229 mg CO₂/g/hr, which were better than those of indoor samples ,such as U. fasciata was 24.375 ± 1.339 mg CO₂/g/hr、G. tenuistpitata was 12.345 ± 0.865 mg CO₂/g/hr、N. oculata was 105.722 ± 30.663 mg CO₂/g/hr、C. pyrenoidsa was 84.409 ± 17.593 mg CO₂/g/hr、Chlorococcum sp. was 69.773 ± 10.145 mg CO₂/g/hr. Biomass conversion rates of U. fasciata which cultivated at indoor was the result of 1 g dry weight uptaking 244.795 ± 43.584 g CO₂, which is better than they were cultivated at outdoor which 1 g dry weight had uptaken 235.024 ± 33.201 g CO₂. Biomass conversion rates of N. oculata which cultivated at indoor which 1 g dry weight had uptaken 149.765 ± 75.743 g CO₂, which is better than they were cultivated at outdoor of 1 g dry weight uptaking 127.572 ± 104.841 g CO₂. The rate of CO2 absorption of U. fasciata cultured in the 80 g/2 L density was the best at outdoor among the other of macroalgae. N. oculata had the best rate of CO2 absorption among the other of microalgae when cultivated at indoor. U. fasciata also had the best biomass conversion rates.
目錄
頁次
謝辭…………………………………………………………………………………Ⅰ
中文摘要……………………………………………………………………………Ⅱ
英文摘要……………………………………………………………………………Ⅲ
目錄…………………………………………………………………………………Ⅴ
圖目錄………………………………………………………………………………Ⅵ
表目錄………………………………………………………………………………Ⅶ
壹、 前言………………………………………………………………………1
貳、 材料與方法………………………………………………………………8
參、 結果……………………………………………………………………13
肆、 討論……………………………………………………………………19
伍、 結論……………………………………………………………………26
陸、 參考文獻………………………………………………………………27
附錄…………………………………………………………………………………41


王巧晗、董雙林、田相利、王芳、董雲偉、張凱,2010。光照強度對孔石蓴生長和藻體化學組成的影響。海洋科學,34(8):76~80。
吳夏芫、李環、韋萍,2008。能源微藻-葡萄藻的研究進展。中文科技論文在線。李中光、劉新校、侯佳蕙,2012。淺談利用微藻固定CO2 實現碳減排。環保簡訊16。
李中光、劉新校、侯佳蕙,2012。淺談利用微藻固定CO2 實現碳減排。環保簡訊 16。
李宣德、馮豐隆,2008。森林碳吸存資源調查推估模式系統-以台灣樟樹為例。台灣林業科學,15-26。
杜曉鳳、鄒寧、孫東紅、常林、趙萍,2011。光照強度對微綠球藻生長及有機質影響。Bioprocess,1: 18-21。
周明顯、朱信、張仁瑞、鄭文熙,2007。以藻類及植物光合作用回收再利用二氧化碳技術研發。96 年度「環保署/國科會空污防制科研合作計畫」成果完整報告。
林舒美,2005。海水微藻抑制病原弧菌Vibrio alginolyticus增生之研究。國立臺灣海洋大學水產養殖學系碩士論文。
徐少琨、張峰、向文洲、吳園濤、任小波,2011a。微藻應用於煤碳煙氣减排的研究進展。地球科學進展,26(9):944-953。
徐明光,2007。臺灣桃園地區綠藻之調查研究(第三年)。國立台灣博物館96年度自行研究計畫。
徐振豐、張睿昇、周立進、吳裂慶,2011b。澎湖的海藻與生活應用,澎湖縣政府文化局,澎湖縣。
桂德君,2004。環境因素對菊花心種龍鬚菜外表形態碎形維度的影響。國立中山 大學海洋生物研究所碩士論文。
殷大聰、耿亞紅、梅洪、歐陽崢嶸、胡鴻鈞、李夜光,2008。幾種主要環境因子對布朗葡萄藻(Botryococcus braunii)光合作用的影響。武漢植物學研究,26(1):64-69。
高千雅,2009。建立一光生物反應系統用於微藻的高密度養殖與二氧化碳的減量。國立交通大學生化工程研究所碩士論文。
郭赣林、董雙林、董雲偉,2006。溫度及波動對孔石蓴生長及光合作用的影響。中國海洋大學學報,36(6):941~994。
陳衍昌、潘崇良、邱思魁、林正輝、唐世杰,2009。綠藻石蓴在大量排放CO2 產業現場減碳技術效益評估之初步探討。第三屆海峽兩岸「魚類生理與養殖」研討會。基隆。
陳宜蓉,2010。微藻減碳 打造綠色世代新紀元。源81:4-10。
黃淑芳,2000。台灣東北角海藻圖錄。台灣博物館,台北市。
楊鷺生、李國平、陳林水,2003。蛋白核小球藻粉的蛋白質、氨基酸含量及營養 價值評價。亞熱帶植物科學,32(1):36-38。
蔡娟娟,2000。營養鹽與溫度對墾丁南灣大型海藻生物量之影響。國立中山大學 海洋生物研究所碩士論文。
蔣霞敏,2002。溫度、光照、氮含量對微綠球藻生長及脂肪酸組成的影響。海洋科學,26(8):9-13。
蕭茂修,2007。以海洋微藻固定CO2 並作為生質能源之研究。國立成功大學環境工程學系碩士論文。
謝誌鴻,2009。微藻培養與微藻油脂生產之研究。國立成功大學化學工程學系博士論文。
蘇惠美、黃俊翰、蔡健偉、陳紫媖,2009。海藻的利用與養殖。科學發展,433:12-19。
蘇惠美,2010。台灣海藻產業的現況與展望。水產試驗所東港生技研究中心。
Antia N.J., Bisalputra T., Cheng J.Y., and Kalley J.P., 1975, Pigment and cytological evidence for reclassification of Nannochloropsis oculata and Monallantus salina in the Eustigmatophyceae. Journal of Physiology. 11, 339-343.
Chung I. K., Beardall J., Mehta S., Sahoo D., and Stojkovic S., 2011, Using marine macroalgae for carbon sequestration:a critical appraisal. Journal of Applied Phycology 23:877–886
Droop M.R., Norris J.R., and Ribbon S.W., 1969. Methods in microbiology. Academic Press. New York. pp. 269-313.
González J.M., Fernández G.B., Fernàndez G.A., Gómez C.L., Sánchez O., Coll L.M., Del C.J., Escudero L, Rodríguez M.R.,Alonso S.L, Latasa M., Paulsen I, Nedashkovskaya O., Lekunberri I., Pinhassi J., and Pedrós A.C., 2008, Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria): A tale of two environments. Proceedings of the National Academy of Science USA 105:8724–8729.
Guillard R.R.L., 1975, Culture of phytoplankton for feeding marine invertebrates. In Smith W.L. and Chanley M.H (Eds.)Culture of Marine Invertebrate Animals. Plenum Press, New York, USA. pp 26-60.
Hiroyo M., and Shioji N., 1994, Carbon dioxide fixation by microalgae photosynthesis using actualflue gas discharged from a boiler. Biochemistry and Biotechnology, 45-46(1):799-801.
Hu Q. , Kurano N., Kawachi M., Iwasaki I., and Miyachi S., 1998, Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Applied Microbiology and Biotechnology, 49(6):655-662.
Ibelings B.W., Kroon B.M.A., and Mur L.R., 1994, Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating. photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New Phytologist, 128, 407-424.
Kirrolia A., Bishnoi N.R., and Singh R., 2012, Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. . Journal of Algal Biomass Utillization, 3 (3):46 – 53.
Kurano N., Ikemoto H., Miyashita H., Hasegawa T., Hata H., and Miyachi S., 1995, Fixation and Utilization of carbon dioxide by microalgal photosynthesis. Energy Convers. Mgmt. 36: 689-692.
Ma Y.N. ,2001. Physiological responses of Chlorococcum sp. to external stresses. Doctor of Philosophy at the University of Hong Kong.
Muraoka D., 2004,Seaweed resources as a source of carbon fixation, Bulletin Fisheries Research Agency, Supplement 1, 59-63
Nellemann C., Corcoran E., Duarte C.M., Valdés L., Young C.D., Fonseca L., and Grimsditch G, 2009, 藍碳. 聯合國環境規劃署, 全球資源信息數據庫挪威阿倫達爾中心.
Nielsen S.S., 2010, Phenol-Sulfuric Acid Method for Total Carbohydrates. Food Analysis Laboratory Manual. pp 47-53.
Provasoli L., 1968, Media and prospects for the cultivation of marine algae. In Watanabe, A. and Hattori, A. (Eds.) Cultures and Collections of Algae. Proc. U.S.-Japan Conf. Hakone, Japan, September 1966. Publ. by the Japan Society Plant Physiolology, pp. 63-75.
Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., and Bullister J.L., Wanninkhof R., Wong C.S. , Wallace D.W.R., Tilbrook B., Millero F.J., Peng, T.H., 2004, The oceanic sink for anthropogenic CO2. Science 305:367–371.
Seiter K., Hensen C., and Zabel M., 2005, Benthic carbon mineralization on a global scale, Global Biogeochemical Cycles, 19, GB1010, doi:10.1029/ 2004GB002225, 2005. 3173
Shi J., Pan K., Yu J., Zhu B., Yang G., Yu W., and Zhang X., 2008, Analysis of exoressed sequence tags from the marine microalga Nannochloropsis oculata(Eustigmatophyceae)(Note). Journal of Phycology, 44(1): 99-102.
Siegenthaler U., and Sarmiento J.L., 1993, Atmospheric carbon dioxide and the ocean. Nature, 365, 119-125.
Suzuki Y., 1997, Marine biota and global carbon cycling. University of Tokyo press, Tokyo, 208pp.
Sze P., 2000, A Biology of the Algae, McGraw-Hill Education, Asia.
Tsarenko P.M., 2011, Trebouxi ophceae. In: Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Volume 3: Chlorophyta.(Tsarenko P.M., Wasser S.P., and Nevo E. Eds),pp.61-108. Ruggell: A.R.A. Gantner Verlag K.-G..
Wu C.Y., 1998, The Seaweed resources of China, in "Seaweed Resources of the World. JICA press, Yokosuka. Siegenthaler.
Yoshihara K.I., and Nagase H., 1996, Biological elimination of nitric oxide and carbon dioxide from flue gas by marine mieroalga NOA-13 cultivated in a long tubular photobioreactor. Journal of Fermentation and Bioengineering, 82(4):351-354.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔