跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡欣屏
研究生(外文):Hsin-Ping Chien
論文名稱:Tbx5基因缺損對斑馬魚(Danio rerio)胚胎時期心肌細胞增生與心管環化之影響
論文名稱(外文):The expression of cardiomyocyte proliferation and heart looping on tbx5 gene knockdown zebrafish (Danio rerio) embryos
指導教授:陸振岡
指導教授(外文):Jenn- Kan Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:細胞增生環化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Tbx5屬於T-box家族之轉錄因子,表現於脊椎動物胚胎時期的心臟、前肢和眼睛。利用專一性反意股寡核苷酸抑制斑馬魚胚胎tbx5基因表現,會造成胚胎心臟缺損,包含心博減緩、looping產生缺損、心房心室變小等現象。使用共軛焦顯微鏡觀察發現注射tbx5-MO (Morpholino)之斑馬魚胚胎其心肌細胞數量有減少情形。透過斑馬魚DNA晶片偵測注射tbx5-MO後斑馬魚胚胎在24、30及48hpf基因表現情形,發現調控心臟肌肉增生與影響心臟環化(heart looping)相關基因表現量下降,包含心肌纖維相關因子、細胞增生與分化相關因子與影響胚胎左右不對稱發育因子、細胞週期相關因子等。利用晶片結果進行相對即時定量偵測調控心臟肌肉增生相關基因:與nkx2.5共同調控心肌纖維生長的mef2ca、位於tbx5下游調控心肌細胞增生的ndrg4、及心室肌縫隙連接的主要亞基蛋白cx43,結果顯示其表現量皆有顯著下降(p<0.05)。使用免疫螢光染色觀察心肌相關蛋白質CX43、MEF2C與MF20,結果顯示表現量均有下降趨勢;研究結果證明以斑馬魚作為研究心肌增生與心臟發育模式物種的可能性。生長賀爾蒙GH及IGF-I做用需要依靠其受體活化,進一步引發做用機制;而本研究利用相對即時定量偵測斑馬魚胚胎不同發育時期ghra、ghrb、igf1ra、igf1rb表現量,結果顯示在1細胞期便可偵測到這四個receptor表現,推測GH與IGF-I為母體轉錄因子(maternal factors)。進一步利用生長荷爾蒙GH、IGF-Ⅰ改善tbx5基因所造成缺損,結果顯示許多調控心臟細胞增生與心臟looping相關因子其表現量皆達到1.5倍上升,其中包含細胞增生、細胞分化相關因子與心肌調控因子,以及纖維母細胞生長因子;推測GH及IGF-Ι可以藉由部分增加肌肉發育及細胞週期相關基因或減少抑制細胞凋亡相關基因,部分恢復tbx5基因弱化所造成的缺損。在免疫螢光染色的實驗中,共同注射tbx5-MO與生長賀爾蒙GH、IGF-I的斑馬魚胚胎其心肌相關蛋白質MEF2C、CX43、MF20表現量皆有回復情形;綜合以上結果證明使用生長相關荷爾蒙GH、IGF-I回復tbx5基因弱化的斑馬魚胚胎是可行的。
謝辭 ............................................................................................................................... i
摘要 .............................................................................................................................. ii
英文摘要 ..................................................................................................................... iii
目錄 ............................................................................................................................. iv
表目錄 ........................................................................................................................ vii
圖目錄 ....................................................................................................................... viii
壹、前言 ...................................................................................................................... 1
一、心臟(heart)................................................................................................... 1
二、左右不對稱發育............................................................................................... 5
三、胸鰭................................................................................................................... 6
四、T-box 轉錄因子(Transcription factor)家族 ............................................... 7
五、Tbx5 基因之表現區域及其作用...................................................................... 8
六、心臟肌肉細胞增生對looping 之影響 ............................................................ 9
七、生長賀爾蒙對胚胎發育之影響..................................................................... 11
八、應用DNA 微陣列晶片(cDNA microarray)及轉錄體(Transcriptomics)
在斑馬魚胚胎發育上之研究................................................................................. 13
九、本研究之目標................................................................................................. 14
貳、實驗材料 ............................................................................................................ 16
參、實驗方法 ............................................................................................................ 18
一、斑馬魚飼養與受精胚胎之收集及培育......................................................... 18
二、斑馬魚cx43、mef2ca、ndrg4、ghra、ghrb、igf1ra、igf1rb 基因之選殖 18
三、共軛焦顯微鏡................................................................................................. 22
四、斑馬魚cx43、mef2ca、ndrg4、ghra、ghrb、igf1ra、igf1rb 在不同發育
時期之相對定量分析............................................................................................. 23
五、顯微注射(Microinjection) ......................................................................... 24
六、應用生長相關荷爾蒙growth homone 及insulin-like growth factor-Ι 改善
心臟環化與心臟肌肉細胞增生之研究................................................................. 25
七、利用免疫染色觀察tbx5 基因弱化後其調控環化與心臟肌肉細胞增生相
v
關蛋白質之研究表現情形..................................................................................... 25
八、運用斑馬魚晶片(Danio rerio DNA Microarray)探討tbx5 基因弱化後
心臟相關基因的表現情形…………………………………………………….27
肆、結果 .................................................................................................................... 30
一、利用tbx5 專一性反意股寡核酸弱化tbx5 基因表現後,觀察斑馬魚胚胎
各種發育缺損情形的比較..................................................................................... 30
二、利用穿透式電子顯微鏡(TEM)觀察tbx5 基因弱化後斑馬魚心臟結構的改
變............................................................................................................................. 30
三、利用共軛焦顯微鏡觀察tbx5 基因弱化後斑馬魚心臟肌肉細胞的改變 .... 30
四、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討tbx5 基因弱化後基
因與基因之間的交互作用..................................................................................... 31
五、利用相對即時定量聚合酶連鎖反應偵測tbx5 基因弱化後調控looping 與
心肌細胞增生相關基因之影響............................................................................. 31
六、用免疫螢光染色觀察Tbx5 基因弱化後斑馬魚心臟組織上心肌相關蛋白
質之表現................................................................................................................. 32
七、利用相對即時定量聚合酶連鎖反應偵測生長賀爾蒙growth hormone、
insulin-like growth factor I 其受體ghra/rb、igf1ra/rb 在斑馬魚胚胎不同發育
時期的表現情形......................................................................................................... 33
八、利用共軛焦顯微鏡觀察tbx5 基因弱化後分別注射生長荷爾蒙growth
hormone、insulin-like growth factor-Ι,斑馬魚胚胎心肌細胞缺損回復的情形 ... 33
九、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討tbx5 基因弱化後運
用生長荷爾蒙growth hormone、insulin-like growth factor-Ι 改善其缺損的基因
交互作用................................................................................................................. 34
十、利用相對即時定量聚合酶連鎖反應偵測tbx5 基因弱化後運用生長荷爾
蒙growth hormone、insulin-like growth factor-Ι 改善其調控looping 與心肌細
胞增生相關基因之影響......................................................................................... 34
十一、用免疫螢光染色觀察Tbx5 基因弱化後運用生長荷爾蒙growth hormone、
insulin-like growth factor-Ι 改善其斑馬魚心臟組織上心肌相關蛋白質之表現 36
伍、討論 .................................................................................................................... 37
一、利用tbx5 專一性反意股寡核苷酸弱化tbx5 基因表現後,觀察斑馬魚胚
胎不同發育時期之活存率..................................................................................... 37
二、利用tbx5 專一性反意股寡核苷酸弱化tbx5 基因表現後,觀察斑馬魚胚
胎各種發育缺損情形的比較................................................................................. 37
三、利用共軛焦顯微鏡(confocal microscopy)觀察tbx5 基因弱化後斑馬魚心
臟肌肉細胞的改變................................................................................................. 38
四、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討tbx5 基因弱化後基
因與基因之間的交互作用..................................................................................... 38
vi
五、利用相對即時定量聚合酶連鎖反應偵測tbx5 基因弱化後調控looping 與
心肌細胞增生相關基因之影響............................................................................. 38
六、用免疫螢光染色觀察tbx5 基因弱化後斑馬魚心臟組織上心肌相關蛋白
質之表現................................................................................................................. 39
七、利用相對即時定量聚合酶連鎖反應偵測tbx5 基因弱化後運用生長荷爾
蒙growth hormone、insulin-like growth factor-Ι 改善調控心臟looping 與心肌
細胞增生相關基因之影響......................................................................................... 39
八、利用共軛焦顯微鏡觀察tbx5 基因弱化後分別注射生長賀爾蒙growth
hormone、insulin-like growth factor I,斑馬魚胚胎心肌細胞缺損回復情形 ....... 40
九、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討tbx5 基因弱化後運
用生長荷爾蒙growth hormone、insulin-like growth factor-Ι 改善其缺損的基因
交互作用................................................................................................................. 40
十、利用相對即時定量聚合酶連鎖反應偵測tbx5 基因弱化後運用生長荷爾
蒙growth hormone、insulin-like growth factor-Ι 改善調控心臟looping 與心肌
細胞增生相關基因之影響..................................................................................... 40
十一、用免疫螢光染色觀察tbx5 基因弱化後運用生長荷爾蒙growth hormone、
insulin-like growth factor-Ι 改善其斑馬魚心臟組織上心肌相關蛋白質之表現 .41
十二、tbx5 基因弱化對斑馬魚胚胎心臟發育的影響.. ... .. .. .. . .. . .. . .. .. .. .. 42
陸、參考文獻 ............................................................................................................ 44
柒、圖表 .................................................................................................................... 53
捌、附錄 .................................................................................................................... 85
楊承憲。2002。dHAND 基因影響斑馬魚(Danio rerio)胚胎心血管發育之研究。
碩士論文。國立台灣海洋大學水產養殖研究所。
李玉琪。2005。tbx5 基因對斑馬魚胚胎時期心臟發育之影響及心臟缺損模式之建
立。碩士論文。國立台灣海洋大學水產養殖研究所。
朱曦林。2007。tbx5 基因對斑馬魚心臟肌肉生成之影響及應用生長相關荷爾蒙改
善心臟區損之研究。碩士論文。國立台灣海洋大學水產養殖研究所。
薛招芬。2008。應用生長相關激素改善tbx5 弱化所造成的心臟缺損及以cDNA 晶
片探討tbx5 弱化後斑馬魚胚胎心臟相關基因的表現模式。碩士論文。國立
台灣海洋大學水產養殖研究所。
葉書優。2010。tbx5 基因弱化對斑馬魚(Danio rerio)胚胎時期細胞週期及細胞凋
亡之影響。碩士論文。國立台灣海洋大學水產養殖研究所。
林奕岑。2011。tbx5 基因對斑馬魚(Danio rerio)胚胎細胞外基質生成之影響。碩士
論文。國立台灣海洋大學水產養殖研究所
Agulnik, S.I., Bollag, R.J.,Silver, L.M., 1995. Conservation of the T-box gene family
from Mus musculus to Caenorhabditis elegans . Genomics . 25, 214-9.
Ahn, D.G., Kourakis, M.J., Rohde, L.A., Silver, L.M.,Ho, R.K., 2002. T-box gene tbx5
is essential for formation of the pectoral limb bud. Nature. 417, 754-8.
Ahuja, P., Sdek, P.,MacLellan, W.R., 2007. Cardiac myocyte cell cycle control in
development, disease, and regeneration. Physiol Rev. 87, 521-44.
Allessie, M., Ausma, J.,Schotten, U., 2002. Electrical, contractile and structural
remodeling during atrial fibrillation. Cardiovasc Res. 54, 230-46.
Anderson, R.H., Webb, S.,Brown, N.A., 1998. Defective lateralisation in children with
congenitally malformed hearts. Cardiol Young. 8, 512-31.
Anversa, P.,Nadal-Ginard, B., 2002. Cardiac chimerism: methods matter. Circulation.
106, e129-31.
Anversa, P., Olivetti, G., Leri, A., Liu, Y.,Kajstura, J., 1997. Myocyte cell death and
ventricular remodeling. Curr Opin Nephrol Hypertens. 6, 169-76.
Armstrong, E.J.,Bischoff, J., 2004. Heart valve development: endothelial cell signaling
and differentiation. Circ Res. 95, 459-70.
Basson, C.T., Huang, T., Lin, R.C., Bachinsky, D.R., Weremowicz, S., Vaglio, A.,
Bruzzone, R., Quadrelli, R., Lerone, M., Romeo, G., Silengo, M., Pereira, A.,
Krieger, J., Mesquita, S.F., Kamisago, M., Morton, C.C., Pierpont, M.E., Muller,
C.W., Seidman, J.G.,Seidman, C.E., 1999. Different TBX5 interactions in heart
and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA.
96, 2919-24.
Bateman, J.F., Chan, D., Mascara, T., Rogers, J.G.,Cole, W.G., 1986. Collagen defects
in lethal perinatal osteogenesis imperfecta. Biochem J. 240, 699-708.
Begemann, G.,Ingham, P.W., 2000. Developmental regulation of Tbx5 in zebrafish
embryogenesis. Mech Dev. 90, 299-304.
Bogdan Allemann, I.,Baumann, L., 2008. Hyaluronic acid gel (Juvederm) preparations
in the treatment of facial wrinkles and folds. Clin Interv Aging. 3, 629-34.
Bossert, T., Walther, T., Gummert, J., Hubald, R., Kostelka, M.,Mohr, F.W., 2002.
Cardiac malformations associated with the Holt-Oram syndrome--report on a
family and review of the literature. Thorac Cardiovasc Surg. 50, 312-4.
Bottner, M., Krieglstein, K.,Unsicker, K., 2000. The transforming growth factor-betas:
structure, signaling, and roles in nervous system development and functions. J
Neurochem. 75, 2227-40.
Brassington, A.M., Sung, S.S., Toydemir, R.M., Le, T., Roeder, A.D., Rutherford, A.E.,
Whitby, F.G., Jorde, L.B.,Bamshad, M.J., 2003. Expressivity of Holt-Oram
syndrome is not predicted by TBX5 genotype. Am J Hum Genet. 73, 74-85.
Brown, D.D., Martz, S.N., Binder, O., Goetz, S.C., Price, B.M., Smith, J.C.,Conlon,
F.L., 2005. Tbx5 and Tbx20 act synergistically to control vertebrate heart
morphogenesis. Development. 132, 553-63.
Bruneau, B.G., 2002. Transcriptional regulation of vertebrate cardiac morphogenesis.
Circ Res. 90, 509-19.
Bruneau, B.G., Nemer, G., Schmitt, J.P., Charron, F., Robitaille, L., Caron, S., Conner,
D.A., Gessler, M., Nemer, M., Seidman, C.E.,Seidman, J.G., 2001. A murine
model of Holt-Oram syndrome defines roles of the T-box transcription factor
Tbx5 in cardiogenesis and disease. Cell. 106, 709-21.
Burdine, R. D. and Schier, A. F. (2000). Conserved and divergent mechanisms in
left-right axis formation. Genes Dev 14, 763-776
Castellano, G., Affuso, F., Conza, P.D.,Fazio, S., 2009. The GH/ IGF-Ι Axis and Heart
Failure. Curr Cardiol Rev. 5, 203-15.
Chen, T.T., Shamblott, M., Lin, C.M., Tang, Y.L., Chan, K.M., Yang, B.Y., and Marsh,
A., 1994. In: Fish Physiology, vol. XIII. Academic Press, New York p:
179-209
Chen, W.H., Pellegata, N.S.,Wang, P.H., 1995. Coordinated effects of insulin-like
growth factor I on inhibitory pathways of cell cycle progression in cultured
cardiac muscle cells. Endocrinology. 136, 5240-3.
Chiu, Y.T., Cheng, C.C., Lin, N.N., Hung, Y.W., Chen, Y.T., Hsu, S.L., Chi, C.S.,Fu,
Y.C., 2006. High-dose norepinephrine induces disruption of myocardial
extracellular matrix and left ventricular dilatation and dysfunction in a novel
feline model. J Chin Med Assoc. 69, 343-50.
Cittadini, A., Isgaard, J., Monti, M.G., Casaburi, C., Di Gianni, A., Serpico, R.,
Iaccarino, G.,Sacca, L., 2003. Growth hormone prolongs survival in
experimental postinfarction heart failure. J Am Coll Cardiol. 41, 2154-63.
Cooke, P.S.,Nicoll, C.S., 1984. Role of insulin in the growth of fetal rat tissues.
Endocrinology. 114, 638-43.
Couchman, J.R.,Woods, A., 1999. Syndecan-4 and integrins: combinatorial signaling in
cell adhesion. J Cell Sci. 112 ( Pt 20), 3415-20.
Dalla Libera, L., Ravara, B., Volterrani, M., Gobbo, V., Della Barbera, M., Angelini, A.,
Danieli Betto, D., Germinario, E.,Vescovo, G., 2004. Beneficial effects of GH/
IGF-Ι on skeletal muscle atrophy and function in experimental heart failure. Am
J Physiol Cell Physiol. 286, C138-44.
Day, A.J.,Prestwich, G.D., 2002. Hyaluronan-binding proteins: tying up the giant. J Biol
Chem. 277, 4585-8.
de Azevedo Figueiredo, M., Lanes, C.F., Almeida, D.V., Proietti, M.C.,Marins, L.F.,
2007. The effect of GH overexpression on GHR and IGF-I gene regulation in
different genotypes of GH-transgenic zebrafish. Comp Biochem Physiol Part D
Genomics Proteomics. 2, 228-33.
DeHaan, R.L., 1965. Development of pacemaker tissue in the embryonic heart. Ann N
Y Acad Sci. 127, 7-18.
DeRuiter, M.C., Poelmann, R.E., VanderPlas-de Vries, I., Mentink,
M.M.,Gittenberger-de Groot, A.C., 1992. The development of the myocardium
and endocardium in mouse embryos. Fusion of two heart tubes?Anat Embryol
(Berl). 185, 461-73.
Deschamps, A.M.,Spinale, F.G., 2005. Matrix modulation and heart failure: new
concepts question old beliefs. Curr Opin Cardiol. 20, 211-6.
Diez, J., 2007. Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens
(Greenwich). 9, 546-50.
Dunwoodie, S.L., 2007. Combinatorial signaling in the heart orchestrates cardiac
induction, lineage specification and chamber formation. Semin Cell Dev Biol.
18, 54-66.
Ewton, D.Z.,Florini, J.R., 1981. Effects of the somatomedins and insulin on myoblast
differentiation in vitro. Dev Biol. 86, 31-9.
Fan, C., Duhagon, M.A., Oberti, C., Chen, S., Hiroi, Y., Komuro, I., Duhagon, P.I.,
Canessa, R.,Wang, Q., 2003a. Novel TBX5 mutations and molecular mechanism
for Holt-Oram syndrome. J Med Genet. 40, e29.
Fan, C., Liu, M.,Wang, Q., 2003b. Functional analysis of TBX5 missense mutations
associated with Holt-Oram syndrome. J Biol Chem. 278, 8780-5.
Fazio, S., Palmieri, E.A., Biondi, B., Cittadini, A.,Sacca, L., 2000. The role of the
GH-IGF-I axis in the regulation of myocardial growth: from experimental
models to human evidence. Eur J Endocrinol. 142, 211-6.
Fisher, S., Jagadeeswaran, P.,Halpern, M.E., 2003. Radiographic analysis of zebrafish
skeletal defects. Dev Biol. 264, 64-76.
Flanders, K.C., Ren, R.F.,Lippa, C.F., 1998. Transforming growth factor-betas in
neurodegenerative disease. Prog Neurobiol. 54, 71-85.
Florini, J.R., Ewton, D.Z., and Coolican, S.A., 1996. Growth hormone and the
insulinlike growth factor system in myogenesis. Endocrine Reviews 17:
481-517.
Garrity, D.M., Childs, S.,Fishman, M.C., 2002. The heartstrings mutation in zebrafish
causes heart/fin Tbx5 deficiency syndrome. Development. 129, 4635-45.
Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L.,Papaioannou, V.E., 1998.
Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and
development. Development. 125, 2499-509.
Gonzalez-Juanatey, J.R., Pineiro, R., Iglesias, M.J., Gualillo, O., Kelly, P.A., Dieguez,
C.,Lago, F., 2004. GH prevents apoptosis in cardiomyocytes cultured in vitro
through a calcineurin-dependent mechanism. J Endocrinol. 180, 325-35.
Grimm, D., Cameron, D., Griese, D.P., Riegger, G.A.,Kromer, E.P., 1998. Differential
effects of growth hormone on cardiomyocyte and extracellular matrix protein
remodeling following experimental myocardial infarction. Cardiovasc Res. 40,
297-306.
Gu, Y., Zou, Y., Aikawa, R., Hayashi, D., Kudoh, S., Yamauchi, T., Uozumi, H., Zhu, W.,
Kadowaki, T., Yazaki, Y.,Komuro, I., 2001. Growth hormone signalling and
apoptosis in neonatal rat cardiomyocytes. Mol Cell Biochem. 223, 35-46.
Hamada, H., Meno, C., Watanabe, D. and Saijoh, Y. (2002). Establishment of vertebrate
left-right asymmetry. Nat Rev Genet 3, 103-113.
Harvey, R. P. (2002). Patterning the vertebrate heart. Nat Rev Genet 3, 544-556.
Harvey, S., Scanes, C.G., Daughaday, WH, Growth hormone. 1995: CRC Press, Inc.,
2002 Corporate Blvd., N.W., Boca Raton, Florida 33431. 1-20,33-35,90-120.
Hatcher, C.J., Kim, M.S., Mah, C.S., Goldstein, M.M., Wong, B., Mikawa, T.,Basson,
C.T., 2001. TBX5 transcription factor regulates cell proliferation during
cardiogenesis. Dev Biol. 230, 177-88.
Hatcher, C.J., Kim, M.S.,Basson, C.T., 2000. Atrial form and function: lessons from
human molecular genetics. Trends Cardiovasc Med. 10, 93-101.
Hayashi, S., Aso, H.,Watanabe, K., Nara, H., Rose, M.T., Ohwada, S., and Yamaguchi,
T., 2004. Sequence of IGF-I, IGF-II, and HGF expression in regenerating
skeletal muscle. Histochem Cell Biol 122: 427-434.
Hettasch, J.M., Bandarenko, N., Burchette, J.L., Lai, T.S., Marks, J.R., Haroon, Z.A.,
Peters, K., Dewhirst, M.W., Iglehart, J.D.,Greenberg, C.S., 1996. Tissue
transglutaminase expression in human breast cancer. Lab Invest. 75, 637-45.
Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazaki, Y., Nagai, R.,Komuro, I., 2001.
Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte
differentiation. Nat Genet. 28, 276-80.
Hoffman, J.I., 1995a. Incidence of congenital heart disease: I. Postnatal incidence.
Pediatr Cardiol. 16, 103-13.
Hoffman, J.I., 1995b. Incidence of congenital heart disease: II. Prenatal incidence.
Pediatr Cardiol. 16, 155-65.
Holt, K.H., Crosbie, R.H., Venzke, D.P.,Campbell, K.P., 2000. Biosynthesis of
dystroglycan: processing of a precursor propeptide. FEBS Lett. 468, 79-83.
Horb, M.E.,Thomsen, G.H., 1999. Tbx5 is essential for heart development.
Development. 126, 1739-51.
Huang, Y.C., Khait, L.,Birla, R.K., 2008. Modulating the functional performance of
bioengineered heart muscle using growth factor stimulation. Ann Biomed Eng.
36, 1372-82.
Isphording, D., Leylek, A.M., Yeung, J., Mischel, A.,Simon, H.G., 2004. T-box genes
and congenital heart/limb malformations. Clin Genet. 66, 253-64.
Itasaki, N., Nakamura, H., Sumida, H.,Yasuda, M., 1991. Actin bundles on the right side
in the caudal part of the heart tube play a role in dextro-looping in the embryonic
chick heart. Anat Embryol (Berl). 183, 29-39.
Kersti K. Linask, and Michael VanAuker (2007). A role for the cytoskeleton in heart
looping. TheScientificWorldJOURNAL 7, 280–298
Kolle, S., Stojkovic, M., Boie, G., Wolf, E.,Sinowatz, F., 2002. Growth hormone
inhibits apoptosis in in vitro produced bovine embryos. Mol Reprod Dev. 61,
180-6.
Kosaki, K. and Casey, B. (1998). Genetics of human left-right axis malformations.
Semin Cell Dev Biol 9, 89-99.
Kurki, P., Lotz, M., Ogata, K.,Tan, E.M., 1987. Proliferating cell nuclear antigen
(PCNA)/cyclin in activated human T lymphocytes. J Immunol. 138, 4114-20.
Laron, Z., 2001. Insulin-like growth factor 1 (IGF-Ι): a growth hormone. Mol Pathol. 54,
311-6.
Latacha, K.S., Remond, M.C., Ramasubramanian, A., Chen, A.Y., Elson, E.L.,Taber,
L.A., 2005. Role of actin polymerization in bending of the early heart tube. Dev
Dyn. 233, 1272-86.
Le Gac, F., Blaise, O., Fostier, A., Le Bail, P.Y., Loir, M., Mourot, B., and Weil, C.,
1993. Growth hormone (GH) and reproduction: a review. Fish Physiol
Biochem 11: 219-232
Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. 2000.
Connexin43 deficiency causes delayed ossification, craniofacial abnormalities,
and osteoblast dysfunction. J Cell Biol 151:931–944.
Lee, R.K., Stainier, D.Y., Weinstein, B.M.,Fishman, M.C., 1994. Cardiovascular
development in the zebrafish. II. Endocardial progenitors are sequestered within
the heart field. Development. 120, 3361-6.
Li YX, Zdanowicz M, Young L, Kumiski D, Leatherbury L, Kirby ML. 2003. Cardiac
neural crest in zebrafish embryos contributes to myocardial cell lineage and
early heart function. Dev Dyn 226:540–550.
Liberatore, C.M., Searcy-Schrick, R.D.,Yutzey, K.E., 2000. Ventricular expression of
tbx5 inhibits normal heart chamber development. Dev Biol. 223, 169-80.
Lien, C.L., Schebesta, M., Makino, S., Weber, G.J.,Keating, M.T., 2006. Gene
expression analysis of zebrafish heart regeneration. PLoS Biol. 4, e260.
Lin, Q., Schwarz, J., Bucana, C.,Olson, E.N., 1997. Control of mouse cardiac
morphogenesis and myogenesis by transcription factor MEF2C. Science. 276,
1404-7.
Linask, K.K., Yu, X., Chen, Y.,Han, M.D., 2002. Directionality of heart looping: effects
of Pitx2c misexpression on flectin asymmetry and midline structures. Dev Biol.
246, 407-17.
Linask, K.K.,Vanauker, M., 2007. A role for the cytoskeleton in heart looping.
ScientificWorldJournal. 7, 280-98.
Logan, M., Simon, H.G.,Tabin, C., 1998. Differential regulation of T-box and
homeobox transcription factors suggests roles in controlling chick limb-type
identity. Development. 125, 2825-35.
Lu, J.H., Lu, J.K., Choo, S.L., Li, Y.C., Yeh, H.W., Shiue, J.F.,Yeh, V.C., 2008. Cascade
effect of cardiac myogenesis gene expression during cardiac looping in tbx5
knockdown zebrafish embryos. J Biomed Sci. 15, 779-87.
Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L.,Harvey, R.P., 1995.
Myogenic and morphogenetic defects in the heart tubes of murine embryos
lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654-66.
Meisler, M.H., 1997. Mutation watch: mouse brachyury (T), the T-box gene family, and
human disease. Mamm Genome. 8, 799-800.
Mercola, M. (1999). Embryological basis for cardiac left-right asymmetry. Semin Cell
Dev Biol 10, 109-116.
Miura T, Miki T, Yano T. Role of the gap junction in ischemic preconditioning in the
heart. Am J Physiol Heart Circ Physiol 298: H1115–H1125, 2010
Moorman, A.F.,Christoffels, V.M., 2003. Cardiac chamber formation: development,
genes, and evolution. Physiol Rev. 83, 1223-67.
Mori, A.D., Zhu, Y., Vahora, I., Nieman, B., Koshiba-Takeuchi, K., Davidson, L., Pizard,
A., Seidman, J.G., Seidman, C.E., Chen, X.J., Henkelman, R.M.,Bruneau, B.G.,
2006. Tbx5-dependent rheostatic control of cardiac gene expression and
morphogenesis. Dev Biol. 297, 566-86.
Moriyama, S., Swanson, P., Nishi, M., Takahashi, A., Kawauchi, H., Dickho, V.W.W.,
and Plisetskaya, E.M., 1994. Development of homologous radioimmunoassay
for coho salmon insulin-like growth factor-I. Gen. Comp Endocrinol 96:
149-161.
Morris, C.A.,Mervis, C.B., 2000. Williams syndrome and related disorders. Annu Rev
Genomics Hum Genet. 1, 461-84.
Muller, C.W.,Herrmann, B.G., 1997. Crystallographic structure of the T domain-DNA
49
complex of the Brachyury transcription factor. Nature. 389, 884-8.
Munshi, H.G., Wu, Y.I., Mukhopadhyay, S., Ottaviano, A.J., Sassano, A., Koblinski, J.E.,
Platanias, L.C.,Stack, M.S., 2004. Differential regulation of membrane type
1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated
tissue inhibitor of metalloproteinases 2 expression controls transforming growth
factor-beta1-induced pericellular collagenolysis. J Biol Chem. 279, 39042-50.
Nagaya, N.,Kangawa, K., 2003. Ghrelin improves left ventricular dysfunction and
cardiac cachexia in heart failure. Curr Opin Pharmacol. 3, 146-51.
Napoli, R., Guardasole, V., Matarazzo, M., Palmieri, E.A., Oliviero, U., Fazio, S.,Sacca,
L., 2002. Growth hormone corrects vascular dysfunction in patients with chronic
heart failure. J Am Coll Cardiol. 39, 90-5.
Omerovic, E., Bollano, E., Mobini, R., Kujacic, V., Madhu, B., Soussi, B., Fu, M.,
Hjalmarson, A., Waagstein, F.,Isgaard, J., 2000. Growth hormone improves
bioenergetics and decreases catecholamines in postinfarct rat hearts.
Endocrinology. 141, 4592-9.
Oparil, S., Bishop, S.P.,Clubb, F.J., Jr., 1984. Myocardial cell hypertrophy or
hyperplasia. Hypertension. 6, III38-43.
Ornitz, D.M.,Itoh, N., 2001. Fibroblast growth factors. Genome Biol. 2, reviews3005.
Parrizas, M.,LeRoith, D., 1997. Insulin-like growth factor-1 inhibition of apoptosis is
associated with increased expression of the bcl-xL gene product. Endocrinology.
138, 1355-8.
Parsons, M.J., Campos, I., Hirst, E.M.,Stemple, D.L., 2002. Removal of dystroglycan
causes severe muscular dystrophy in zebrafish embryos. Development. 129,
3505-12.
Payne, R.M., Johnson, M.C., Grant, J.W.,Strauss, A.W., 1995. Toward a molecular
understanding of congenital heart disease. Circulation. 91, 494-504.
Peattie, R.A., Nayate, A.P., Firpo, M.A., Shelby, J., Fisher, R.J.,Prestwich, G.D., 2004.
Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel
implants. Biomaterials. 25, 2789-98.
Perez-Sanchez, J., Calduch-Giner, J.A., Mingarro, M., Vega-Rubin de Celis, S.,
Gomez-Requeni, P., Saera-Vila, A., Astola, A., and Valdivia, M.M., 2002.
Overview of fish growth hormone family. New insights in genomic
organization and heterogeneity of growth hormone receptors. Fish Physiol
Biochem 27: 243-258.
Pizzuti A, Flex E, Mingarelli R, Salpietro C, Zelante L, Dallapiccola B (March 2004). A
homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD
spectrum phenotype. Hum. Mutat. 23 (3): 286
Plageman, T.F., Jr.,Yutzey, K.E., 2004. Differential expression and function of Tbx5 and
Tbx20 in cardiac development. J Biol Chem. 279, 19026-34.
Plageman, T.F., Jr.,Yutzey, K.E., 2006. Microarray analysis of Tbx5-induced genes
expressed in the developing heart. Dev Dyn. 235, 2868-80.
Puro, D.G.,Agardh, E., 1984. Insulin-mediated regulation of neuronal maturation.
Science. 225, 1170-2.
Qian, F., Zhen, F., Ong, C., Jin, S.W., Meng Soo, H., Stainier, D.Y., Lin, S., Peng,
J.,Wen, Z., 2005. Microarray analysis of zebrafish cloche mutant using amplified
cDNA and identification of potential downstream target genes. Dev Dyn. 233,
1163-72.
Rabkin, E., Aikawa, M., Stone, J.R., Fukumoto, Y., Libby, P.,Schoen, F.J., 2001.
50
Activated interstitial myofibroblasts express catabolic enzymes and mediate
matrix remodeling in myxomatous heart valves. Circulation. 104, 2525-32.
Ramsdell, A. F. (2005). Left-right asymmetry and congenital cardiac defects: getting to
the heart of the matter in vertebrate left-right axis determination. Dev Biol 288,
1-20.
Raya, A. and Belmonte, J. C. (2006). Left-right asymmetry in the vertebrate embryo:
from early information to higher-level integration. Nat Rev Genet 7, 283-293.
Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC,
Kidder GM, Rossant J. 1995. Cardiac malformation in neonatal mice lacking
connexin43. Science 267:1831–1834.
Reiss, K., Cheng, W., Ferber, A., Kajstura, J., Li, P., Li, B., Olivetti, G., Homcy, C.J.,
Baserga, R.,Anversa, P., 1996. Overexpression of insulin-like growth factor-1 in
the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl
Acad Sci U S A. 93, 8630-5.
Ren, J., Samson, W.K.,Sowers, J.R., 1999. Insulin-like growth factor I as a cardiac
hormone: physiological and pathophysiological implications in heart disease. J
Mol Cell Cardiol. 31, 2049-61.
Ribeiro, I., Kawakami, Y., Buscher, D., Raya, A., Rodriguez-Leon, J., Morita, M.,
Rodriguez Esteban, C.,Izpisua Belmonte, J.C., 2007. Tbx2 and Tbx3 regulate the
dynamics of cell proliferation during heart remodeling. PLoS One. 2, e398.
Ridpath, J.F., Huiatt, T.W., Trenkle, A.H., Robson, R.M.,Bechtel, P.J., 1984. Growth and
differentiation of chicken embryo muscle cell cultures derived from fast- and
slow-growing lines. Intrinsic differences in growth characteristics and insulin
response. Differentiation. 26, 121-6.
Rotwein, P., Pollock, K.M., Didier, D.K.,Krivi, G.G., 1986. Organization and sequence
of the human insulin-like growth factor I gene. Alternative RNA processing
produces two insulin-like growth factor I precursor peptides. J Biol Chem. 261,
4828-32.
Ryan, K.,Chin, A.J., 2003. T-box genes and cardiac development. Birth Defects Res C
Embryo Today. 69, 25-37.
Sakamoto, T., and Hirano, T., 1993. Expression of insulin-like growthfactor I gene in
osmoregulatory organs during seawater adaptation of the salmonid fish:
possible mode of osmoregulatory action of growth hormone. Proc Natl Acad
Sci USA 90:1912-1916.
Spach, M.S., Heidlage, J.F., Barr, R.C.,Dolber, P.C., 2004. Cell size and communication:
role in structural and electrical development and remodeling of the heart. Heart
Rhythm. 1, 500-15.
Spaventi, R., Antica, M.,Pavelic, K., 1990. Insulin and insulin-like growth factor I (IGF
I) in early mouse embryogenesis. Development. 108, 491-5.
Stainier, D.Y., 2001. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet.
2, 39-48.
Stainier, D.Y., Fouquet, B., Chen, J.N., Warren, K.S., Weinstein, B.M., Meiler, S.E.,
Mohideen, M.A., Neuhauss, S.C., Solnica-Krezel, L., Schier, A.F., Zwartkruis, F.,
Stemple, D.L., Malicki, J., Driever, W.,Fishman, M.C., 1996. Mutations
affecting the formation and function of the cardiovascular system in the
zebrafish embryo. Development. 123, 285-92.
Stainier, D.Y., Lee, R.K.,Fishman, M.C., 1993. Cardiovascular development in the
zebrafish. I. Myocardial fate map and heart tube formation. Development. 119,
51
31-40.
Stefanidakis, M.,Koivunen, E., 2006. Cell-surface association between matrix
metalloproteinases and integrins: role of the complexes in leukocyte migration
and cancer progression. Blood. 108, 1441-50.
Stewart, C.E.,Rotwein, P., 1996. Growth, differentiation, and survival: multiple
physiological functions for insulin-like growth factors. Physiol Rev. 76,
1005-26.
Takeuchi, J.K., Ohgi, M., Koshiba-Takeuchi, K., Shiratori, H., Sakaki, I., Ogura, K.,
Saijoh, Y.,Ogura, T., 2003. Tbx5 specifies the left/right ventricles and ventricular
septum position during cardiogenesis. Development. 130, 5953-64.
Tamura, K., Yonei-Tamura, S.,Izpisua Belmonte, J.C., 1999. Differential expression of
Tbx4 and Tbx5 in Zebrafish fin buds. Mech Dev. 87, 181-4.
Tassabehji, M., Metcalfe, K., Hurst, J., Ashcroft, G.S., Kielty, C., Wilmot, C., Donnai,
D., Read, A.P.,Jones, C.J., 1998. An elastin gene mutation producing abnormal
tropoelastin and abnormal elastic fibres in a patient with autosomal dominant
cutis laxa. Hum Mol Genet. 7, 1021-8.
Tomanek, R.J., Sandra, A., Zheng, W., Brock, T., Bjercke, R.J.,Holifield, J.S., 2001.
Vascular endothelial growth factor and basic fibroblast growth factor
differentially modulate early postnatal coronary angiogenesis. Circ Res. 88,
1135-41.
Ton, C., Stamatiou, D., Dzau, V.J.,Liew, C.C., 2002. Construction of a zebrafish cDNA
microarray: gene expression profiling of the zebrafish during development.
Biochem Biophys Res Commun. 296, 1134-42.
Toole, B.P., 2001. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 12, 79-87.
Tovar-Vidales, T., Roque, R., Clark, A.F.,Wordinger, R.J., 2008. Tissue transglutaminase
expression and activity in normal and glaucomatous human trabecular
meshwork cells and tissues. Invest Ophthalmol Vis Sci. 49, 622-8.
Tsuda, T., Philp, N., Zile, M.H.,Linask, K.K., 1996. Left-right asymmetric localization
of flectin in the extracellular matrix during heart looping. Dev Biol. 173, 39-50.
Tsunezuka, Y., Kinoh, H., Takino, T., Watanabe, Y., Okada, Y., Shinagawa, A., Sato,
H.,Seiki, M., 1996. Expression of membrane-type matrix metalloproteinase 1
(MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental
metastasis assay. Cancer Res. 56, 5678-83.
Turley, E.A., Noble, P.W.,Bourguignon, L.Y., 2002. Signaling properties of hyaluronan
receptors. J Biol Chem. 277, 4589-92.
Turnbull, J., Powell, A.,Guimond, S., 2001. Heparan sulfate: decoding a dynamic
multifunctional cell regulator. Trends Cell Biol. 11, 75-82.
Van den Steen, P.E., Dubois, B., Nelissen, I., Rudd, P.M., Dwek, R.A.,Opdenakker, G.,
2002. Biochemistry and molecular biology of gelatinase B or matrix
metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 37, 375-536.
van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P.,
Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N.,
Mullins, M.C., Odenthal, J., Warga, R.M., Allende, M.L., Weinberg,
E.S.,Nusslein-Volhard, C., 1996. Mutations affecting somite formation and
patterning in the zebrafish, Danio rerio. Development. 123, 153-64.
Vanhoutte, D., Schellings, M., Pinto, Y.,Heymans, S., 2006. Relevance of matrix
metalloproteinases and their inhibitors after myocardial infarction: a temporal
and spatial window. Cardiovasc Res. 69, 604-13.
52
Viragh, S., 1989. [Development of the avian and mammalian heart prior to the onset of
blood circulation, studied in chick and mouse embryos]. Morphol Igazsagugyi
Orv Sz. 29, 255-62.
Visse, R.,Nagase, H., 2003. Matrix metalloproteinases and tissue inhibitors of
metalloproteinases: structure, function, and biochemistry. Circ Res. 92, 827-39.
Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro,
S.D., Senior, R.M.,Werb, Z., 1998. MMP-9/gelatinase B is a key regulator of
growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 93,
411-22.
Wang, L., Ma, W., Markovich, R., Chen, J.W.,Wang, P.H., 1998. Regulation of
cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 83,
516-22.
Williamson, R.A., Henry, M.D., Daniels, K.J., Hrstka, R.F., Lee, J.C., Sunada, Y.,
Ibraghimov-Beskrovnaya, O.,Campbell, K.P., 1997. Dystroglycan is essential for
early embryonic development: disruption of Reichert's membrane in Dag1-null
mice. Hum Mol Genet. 6, 831-41.
Wilson, V.,Conlon, F.L., 2002. The T-box family. Genome Biol. 3, REVIEWS3008.
Wood, A.W., Schlueter, P.J.,Duan, C., 2005. Targeted knockdown of insulin-like growth
factor binding protein-2 disrupts cardiovascular development in zebrafish
embryos. Mol Endocrinol. 19, 1024-34.
Xu, J., Keeton, A.B., Franklin, J.L., Li, X., Venable, D.Y., Frank, S.J.,Messina, J.L.,
2006. Insulin enhances growth hormone induction of the MEK/ERK signaling
pathway. J Biol Chem. 281, 982-92.
Yamaguchi, T.P.,Rossant, J., 1995. Fibroblast growth factors in mammalian
development. Curr Opin Genet Dev. 5, 485-91.
Yang, R., Bunting, S., Gillett, N., Clark, R.,Jin, H., 1995. Growth hormone improves
cardiac performance in experimental heart failure. Circulation. 92, 262-7.
Yeh, H.Y.,Klesius, P.H., 2008. Complete structure, genomic organization, and
expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix
metalloproteinase-9 gene. Biosci Biotechnol Biochem. 72, 702-14.
Yelon, D., 2001. Cardiac patterning and morphogenesis in zebrafish. Dev Dyn. 222,
552-63.
Yurchenco, P.D., 2011. Basement membranes: cell scaffoldings and signaling platforms.
Cold Spring Harb Perspect Biol. 3, doi: 10.1101 / cshperspect.a004911.
Yutzey, K.E.,Benson, D.W., 2003. TBX5: a developmental key that fits many locks. J
Mol Cell Cardiol. 35, 1175-7.
Zamir, E.A., Srinivasan, V., Perucchio, R.,Taber, L.A., 2003. Mechanical asymmetry in
the embryonic chick heart during looping. Ann Biomed Eng. 31, 1327-36.
Zinkevich, N.S., Bosenko, D.V., Link, B.A.,Semina, E.V., 2006. laminin alpha 1 gene is
essential for normal lens development in zebrafish .BMC Dev Biol. 6, 13.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top