(18.206.177.17) 您好!臺灣時間:2021/04/11 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧顯仕
研究生(外文):Xian-Shi Deng
論文名稱:氧化鋅-貴金屬複合薄膜微結構與物性研究
論文名稱(外文):Microstructure and physical properties of ZnO-noble metal composite films
指導教授:梁元彰
指導教授(外文):Yuan-Chang Liang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:薄膜濺鍍微結構銀島狀層表面電漿
外文關鍵詞:Thin filmSputteringMicrostructureAg islandSurface plasmon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究在C軸指向性的氧化鋁基板上利用濺鍍法,300℃下生長不同程度銀含量(3W至13W濺鍍功率)的高C軸指向性氧化鋅-銀的複合薄膜。結構分析顯示,銀含量高的氧化鋅薄膜,其銀奈米顆粒會產生嚴重的聚集,並形成團簇。氧化鋅薄膜的表面隨著銀含量的增加變得粗糙,在13W銀共濺鍍的氧化鋅-銀薄膜中可以觀察到表面形貌明顯的粗糙許多。在缺氧的環境下使用濺鍍法在氧化鋅薄膜中添加銀會改變本質氧化鋅的點缺陷密度。這造成了氧化鋅薄膜在沒有添加銀和有添加銀其光致發光特性的不同。藍光能帶發光主要在純氧化鋅和3W銀共濺鍍的薄膜中被發現。在9W銀共濺鍍功率下的薄膜以紫外光能帶發光為主。當銀濺鍍功率提升到13W時,在膜層的結構中出現許多氧化鋅-銀的複合結晶團簇。此導致在氧化鋅晶格中會產生較多的點缺陷。因此,綠光能帶發光進一步提升。  
  另一方面,氧化鋅-銀複合層薄膜是在矽基板上以交替沉積氧化鋅和銀膜層的方式生長。微結構分析顯示氧化鋅薄膜在沒有插入銀島狀層前是C軸指向性的。氧化鋅薄膜在插入銀島狀層後高度C軸指向性的氧化鋅薄膜晶體特徵稍微降低且氧化鋅膜層的表面變得較粗糙。PL的結果顯示150nm的氧化鋅-銀島狀層/矽複合薄膜其近能帶邊緣(NBE)的發射峰強度提升大約兩倍。這要歸因於銀奈米島狀層對光的表面共振耦合。然而,進一步增加氧化鋅膜層中插入的銀島狀層,造成了矽基板和氧化鋅表面的銀奈米島狀層其大小和分布的不同。這反而抑制了表面電漿對光的共振耦合效應。因為插入多層銀奈米島狀層使得氧化鋅膜層微結構劣化,取而代之的是可見光發光強度的顯著增加。

Highly c-axis-textured ZnO-Ag composite thin films with var ious degrees of Ag addition were grown on c-axis-oriented sa pphire substrates by sputtering at 300 oC in this study. Str uctural analyses show that Ag nanoparticles seriously aggreg ated to form clusters with a high Ag content in the ZnO thin film. The ZnO thin-film surface was further roughened with A g addition; a markedly rugged surface morphology of the ZnO-Ag thin film was observed for the 13W Ag co-sputtered thin f ilm. The Ag addition in the ZnO thin film changed the densit y of native point defects in the ZnO prepared in an oxygen-d eficient ambient by sputtering. This caused different photol uminescence characteristics of the ZnO thin films with and w ithout the Ag addition. The blue emission band was found to dominate the pure and 3W Ag co-sputtered thin films. The UV emission band dominated the 9W Ag co-sputtered thin film. Ma ny ZnO-Ag composite grains clustered on the thin-film struc ture when the Ag-sputtering power level was increased to 13 W. This incurred more oxygen-related point defects in ZnO la ttices; thus, a green emission band was further enhanced.
   On the other hand, ZnO-Ag composite layered thin films were grown on the Si substrates by alternating sputtering de posited ZnO and silver layers. The as-deposited ZnO thin fil m without an insertion of silver island layer is c-axis text ured. The insertion of silver island layer in the ZnO thin f ilms caused the microstructural changes. The highly c-axis-o riented crystallographic feature of the ZnO thin film is sli ghtly decreased and the surface of the ZnO thin film became quite rough. Comparatively, the PL results show the near-ban d-edge (NBE) emission peak intensity was enhanced up to appr oximately two orders for the 150 nm ZnO-Ag island layer/Si c omposite thin film; this is attributed to the plasmon resona nces of Ag nanoislands with the light. However, further incr eased the insertion number of silver island layer in the ZnO thin film caused the different sizes and distribution densit ies of Ag nanoislands on the Si substrate and ZnO surfaces; these suppressed the effectively resonant coupling between t he localized surface plasmon resonances with light. Instead, the visible emission band intensity was markedly increased b ecause of the deteriorated microstructure of the ZnO thin fi lm with the insertion of silver nanoisland layers.

第一章 前言 1
第二章 文獻回顧 2
2-1 氧化鋅晶體結構與特性 2
2-2 二維奈米薄膜之成長機制 2
2-2-1 原子的吸附 2
2-2-2 成核(Nucleation) 3
2-2-3 胚核的生長 3
2-2-4 薄膜的成長 4
2-3 二維奈米薄膜之製程方式 4
2-3-1 溶膠-凝膠法 (Sol-gel) 4
2-3-2 金屬有機化學氣相沈積法(Metal organic chemical vapor deposition,MOCVD) 4
2-3-3 脈衝雷射沉積法(Pulsed Laser Deposition,PLD) 5
2-3-4 濺鍍法 (Sputtering) 5
2-4 氧化鋅奈米薄膜之發光機制 6
2-4-1 紫外光發光(UV emission) 7
2-4-2 藍光發光(Blue emission) 7
2-4-3 綠光發光(Green emission) 7
2-4-4 黃光發光(Yellow emission) 8
2-4-5 光學性值 8
2-5 貴金屬對氧化物薄膜之發光特性影響 8
2-5-1 摻雜 8
2-5-2 表面添加貴金屬 9
第三章 實驗方法與流程 22
3-1 實驗設備 22
3-1-1 磁控濺鍍機 22
3-2 試片製備 22
3-2-1 試片清洗 22
3-2-2 薄膜濺鍍流程 23
3-2-3 氧化鋅-銀複合薄膜生長條件 23
3-2-4 氧化鋅-銀多層薄膜生長條件 23
3-3 材料分析 23
3-3-1 X光繞射分析(X-ray diffractometer,XRD) 24
3-3-2 電子顯微鏡分析(Scanning Electron Microscope,SEM
、Transmission Electron Microscope,TEM) 24
3-3-3 發光特性分析(Photoluminescence,PL) 25
3-3-4 化學鍵結分析(X-ray Photoelectron Spectrometer,XPS) 25
第四章 結果與討論 31
4-1 貴金屬對氧化鋅薄膜奈米結構和特性之影響 31
4-1-1 不同銀含量氧化鋅-銀複合薄膜之結構分析 31
4-1-2 氧化鋅-銀複合薄膜其組成元素之化學鍵結分析 32
4-1-3 氧化鋅-銀複合薄膜發光特性分析 34
4-2 氧化鋅-銀多層薄膜之結構分析 35
4-2-1 氧化鋅-銀多層薄膜之光學分析 36
第五章 總結論 68
第六章 參考文獻 69

【1】Y. Cui , Q. Wei, H.K. Park, Science, 293 (2001) 1289.
【2】M. Law, H. Yan, S. Mao, R. Russo, J. Johonson, R.
Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv.
Funct. Mater. 12 (2002) 323.
【3】W.S. Hu, Z.G. Liu, R.X. Wu, Y.F. Chen, W. Ji, T. Yu, D.
Feng, Appl. Phys. Lett. 71 (1997) 548.
【4】Y. Igasaki, H. Saito, Thin Solid Films 199 (1991) 223.
【5】M.T. Young, S.D. Kenu, Thin Solid Films, 410 (2002) 8.
【6】T. Minami, H. Sato, H. Nanto, S. Takata, Japanese
Journal of Applied Physics, 24 (1985) 781.
【7】R. S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (1964)
89.
【8】W.T. Chiou, W.Y. Wu, J.M. Ting, Diamond and Related
Materials, 12 (2003) 1841.
【9】K. Haga, M. Kamidaira, Y. Kashiwaba, T. Seki, Journal
of Crystal Growth, 277 (2005) 352.
【10】B.L. Zhu , X.Z. Zhao , F.H. Su , G.H. Li , X.G. Wu ,
J. Wu, R. Wu, 84 (2010) 1280.
【11】N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M.
Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M.
Schubert, M. Grundmann , G. Wagner, H. Neumann, V.
Darakchieva, H. Arwin, B. Monemar , J. Appl. Phys. 93
(2003) 126.
【12】J.A. Venables, G.D.T. Spiller, M. Hanbucken,
IOPscience, 47 (1984) 399.
【13】J.W. Mattews, Epitaxial Growth, Part B Chapter 4,
Acdamic Process (1975).
【14】L. Bateta, J. Fradera, E. Mas de les Valls, L.A.
Sedanod, Fusion Engineering and Design, 86 (2011) 421.
【15】C.E. Morosanu , Elsevier Amsterdam Oxford New York,
(1990)163.
【16】S. Fujihara, J. kusakado, T. Kimura, Journal of
materials science latters, l17 (1998) 781.
【17】P.N. Gadgil, J. Crystal Growth, 134 (1993) 302.
【18】A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin,
Appl. Phys. Lett. 75 (1999) 3327.
【19】L.N. Wang, L.Z. Hu, H.Q. Zhang, Y. Qiu, Y. Lang, G.Q.
Liu, J.Y. Ji, J.X. Ma, Z.W. Zhao, Materials Science in
Semiconductor Processing 14 (2011) 274.
【20】M.A. Nicolet , Thin Solid Films, 52 (1978) 415.
【21】J. Musil, P. Barocha, J. Vlceka, K.H. Namc, J.G. Han,
Thin Solid Films, 475 (2005) 208.
【22】M. Ohring , The Materials Science of Thin Films,
Academic Press, U. K. ,(1992) , Chap.3.
【23】J.G. Ryan, S. Robers, Thin Solid Films, 153 (1987)
329.
【24】J. Sun, F.J. Liu, H.Q. Huang, J.W. Zhao, Z.F. Hu, X.Q.
Zhang, Y.S. Wang , Applied Surface Science 257 (2010)
921.
【25】W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, G.J. Huang,
T.Y. Yang, W.W. Liang, Y.H. Zhao, X.D. Meng, P. Yu,
Y.T. Cui, L. Fang, Solid State Communications 152
(2012) 147.
【26】A.B. Djurisic ,Appl. Phys. Lett. 88(2006)103107.
【27】F. Li , Z. Li, F.J. Jin, Mater. Lett., 61 (2007) 1876.
【28】J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B.Wong, C.S. Lee, S.T.
Lee, Chem.Phys. Lett. 344 (2001) 97.
【29】K. Vanheusden, C.H. Seager, W. L. Warren, D.R.
Tallant, J.A. Voigt, Appl. Phys. Lett. 68 (1996) 403.
【30】B. Lin, Z. Fu, Y. Jia, and G. Liao, J. Electrochem.
Soc., 148 (2001) G110.
【31】S.H. Bae, S.Y. Lee, H.Y. Kim, S. Im, Appl. Surf. Sci.,
168 (2000) 332.
【32】A.F. Kohan, G. Ceder, D. Morgan, Phys. Rev. D 61
(2000) 15019.
【33】H. Xue, X.L. Xu, Y. Chen, G.H. Zhang, S.Y. Ma, Applied
Surface Science 255 (2008) 1806.
【34】A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A.
Meijerink, J. Phys. Chem. B 104 (2000) 1715.
【35】D. Zwingel, J Lumin, 5 (1972) 385.
【36】W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Materials
Science in Semiconductor Processing, 9 (2006) 156.
【37】R.S. Zeferino, M.B. Flores, U. Pal1, Journal of
applied physics 109 (2011) 014308.
【38】E. Burstein, Phys. Rev., 93 (1954) 632.
【39】T.S. Moss, Phys. Soc. London Sect. B, 67 (1954) 775.
【40】G. Sberveglieri, S. Groppelli, P. Nelli, A. Camanzi,
Sensors and Actuators B 3 (1991) 183.
【41】K.H. Cha, H.C. Park, K.H. Kim , Sensors and Actuators
B 21 (1994) 91.
【42】U. Tsutomu, Y. Tetsuya, J. of Physics and Chemistry of
Solids, 63 (2002) 1909.
【43】C.Y. Wang, W. Detlef, Chem. Commun, 120 (2000) 1539.
【44】I. Mitsunobu, H. Masayoshi, Journal of Colloid and
Interface Science, 224 (2000) 202.
【45】S.W. Choi, S.S. Kim, Sensors and Actuators B 168
(2012) 8.
【46】C.A. Lin, D.S. Tsai, C.Y. Chen, J.H. He, Nanocale 3
(2011) 1195.
【47】Q. Simon, D. Barreca, D. Bekermann, A. Gasparotto, C.
Maccato, E. Comini, V. Gombac, P. Fornaiero, O.I.
Lebedev, S. Turner, A. Devi, R.A. Fischer, G. Tendeloo,
International J. Hydrogen Engergy 36 (2011) 15527.
【48】D.Q. Yu, J. Li, L.Z. Hu, Chem Phys Lett 464 (2008) 69.
【49】O.R. Ndong, P.F. Deannoy, A. Boyer, A. Giani, A.
Foucaran, Mater Sci Eng B 97 (2003) 68.
【50】R.A. Asmar, G. Ferblantier, F. Mailly, G.P. Borrut, A.
Foucaran,Thin Solid Films 49 (2005) 473.
【51】S.S. Lin, J.L. Huang, Solid State Phenom 118 (2006)
305.
【52】H. Gomez, A. Maldonado, M. Dela, L. Olvera, D.R.
Acosta, Sol Energy Mater. Sol Cells 87 (2005) 107.
【53】H.S. Kang, B.D Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W.
Chang, S.Y. Lee, Appl Phys Lett 88 (2006) 202108.
【54】D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B.
Ketterson, Appl Phys Lett 87 (2005) 82504.
【55】K. Ueda, T. Tabata, T. Kawai, Appl Phys Lett 79 (2001)
988.
【56】Y. Zhang, J. Mu, J. Colloid and Interface Sci. 309
(2007) 478.
【57】I.S. Kim, E.K. Jeong, D.Y. Kim, M. Kumar, S.Y. Choi,
Applied Surface Science 255 (2009) 4011.
【58】Y. Zhang, Z.Y. Zhang, B.X. Lin, Z.X. Fu, J. Phys.
Chem. B 109 (2005) 19200.
【59】J. Fan, R. Freer, J. Appl. Phys. 77 (1995) 4795.
【60】Nakato Y., J. Phys, Chem. 92 (1988) 2316.
【61】A. Wood, M. Giersig., J. Phys, Chem. B. 105 (2001)
8810.
【62】V. Subramanian, P.V. Kamat., J. Phys. Chem. B 107
(2003)7479.
【63】J.S. Jeong, J.Y. Lee, Nanotechnology 21(2010)475603.
【64】謝嘉民、賴一凡、林永昌、枋志堯,「光激發螢光量測的原理、架構及應
用」, 奈米通訊,第12 卷第2 期
【65】R.S. Zeferino, M.B. Flores, U. Pal1, Journal of
Applied Physics 109 (2011) 014308.
【66】D. Zhang, X. Liu, X. Wang, Journal of Alloys and
Compounds, 509 (2011) 4972.
【67】Y.S. Kim , W.P. Tai , Applied Surface Science 253
(2007) 4911.
【68】M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun,
R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158 (2000) 134.
【69】J. Aranovich, A. Oritz, R.H. Bube, J. Vac. Sci.
Technol. 16 (1979) 994.
【70】J.C. Fuggle, E. Kallne, L.M. Watson, D.J. Fabian,
Phys. Rev. B 16 (1997) 750.
【71】G. Schoen, J. Electron Spectrosc. Relat. Phenom. 1
(1972) 377.
【72】V.K. Kaushik, J. Electron Spectrosc. Relat. Phenom. 56
(1991) 273.
【73】R. Romand, M. Roubin, J.P. Deloume, J. Electron
Spectrosc. Relat. Phenom. 13 (1978) 229.
【74】J. Chen, X. Yan, W. Liu, Q. Xue, Sensors and Actuators
B 160 (2011) 1499.
【75】R. Chen, C. Zou, J. Bian, A. Sandhu, W. Gao,
Nanotechnology 22 (2011) 105706
【76】Y.C. Liang, C.Y. Hu, Y.C. Liang, CrystEngComm, 14
(2012) 5579.
【77】Y.C. Liang, H.Y. Lee, CrystEngComm 12 (2010) 3172.
【78】Y.C. Liang, X.S. Deng, H. Zhong, Ceramics
International 38 (2012) 2261.
【79】Y.C. Liang, J.P. Chu, Jpn. J. Appl. Phys. 47 (2008)
257.
【80】L. Cao, L. Zhu, J. Jiang, Y. Li, Y. Zhang, Z. Ye, J.
Alloys and Compounds 516 (2012) 157.
【81】Y. Zhang, J. Mu, J. Colloid and Interface Sci. 309
(2007) 478.
【82】Z. Liang, X. Yu, B. Lei, P. Liu, W. Mai, J. Alloys and
Compounds 509 (2011) 5437.
【83】A.F. Kohan, G. Ceder, D. Morgan, Phys. Rev. D 61
(2000) 15019.
【84】H. Xue, X.L. Xu, Y. Chen, G.H. Zhang, S.Y. Na, Appl.
Surf. Sci. 255 (2008) 1806.
【85】Y.C. Liang, C.Y. Hu, H. Zhong, Applied Surface Science
261 (2012) 633.
【86】Y.C. Liang, M.Y. Tsai, C.L. Huang, C.Y. Hu, C.S.
Hwang, J. Alloys and Compounds, 509 (2011) 3559.
【87】L. Haifei, X. Xiaoliang, L. Liu, G. Maogang, L. J.
Yansong, J. Phys.: Condens. Matter. 20 (2008) 472202.
【88】C.A. Lin, D.S Tsai, C.Y. Chen, J.H. He, Nanoscale 3
(2011) 1195.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔