(3.236.6.6) 您好!臺灣時間:2021/04/23 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈友翔
研究生(外文):Yu-Hsiang Shen
論文名稱:離子輻射誘發氧化鋯由單斜相至四方相之相變化研究
論文名稱(外文):Investigation on the irradiation-induced the monoclinic to tetragonal phase transformation of zirconia
指導教授:黃榮潭
指導教授(外文):Rong-Tan Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:離子佈植氧化鋯四方相單斜相相變化
外文關鍵詞:Ion IrradiationZirconiaZirconiaMonoclinicPhase Transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討自由表面與奈米包覆下之單斜相(Monoclinic,記為M)結構氧化鋯(ZrO2)奈米顆粒,經不同離子源、不同能量及不同劑量的離子轟擊後,其轉變為四方相(Tetragonal,記為T)結構氧化鋯的機制及行為研究。銀包覆氧化鋯奈米顆粒是藉由銀-鋯合金(Ag-Zr alloy)係以內氧化方式(internal oxidation)將氧化鋯孤立嵌入在一個不反應性的銀(Ag)基地內,被基材所侷限的氧化鋯奈米顆粒有別於自由表面之氧化鋯奈米顆粒,而將受到內部或外部之靜水壓力(external hydrostatic pressure)進而可能產生不一樣的變化。
將製備妥之自由表面與奈米包覆的兩種奈米尺寸單斜相結構氧化鋯,接著進行不同條件的離子轟擊。本研究分別使用中央研究院物理研究所的9SDH-II 3 MV串級加速器產生1.5 MeV能量的氫離子(H+)和3 MeV能量的鐵離子(Fe2+),以及清華大學加速器館的HVE 500 kV離子佈植機產生能量為100 keV的氫離子(H+),分別以不同劑量(1×1014 ~1×1016 ions/cm2)轟擊此兩種試片,轟擊後的樣品以X-Ray繞射分析(XRD)與穿透式電子顯微鏡(TEM)來觀察轟擊後氧化鋯的結構變化。
由實驗結果顯示,顆粒尺寸小於30 nm的自由表面氧化鋯奈米顆粒於能量為1.5 MeV與100 keV的氫離子,經由3×1015 ions/cm2以上的劑量轟擊時皆會產生M→T的相變化,而當氧化鋯晶粒尺寸為30 nm以上時,在100 keV及1.5 MeV的氫離子轟擊皆無相變化的發生,顯然氧化鋯藉由氫離子誘發產生相變化存在一尺寸效應。然而,不管顆粒尺寸小於或大於30 nm的自由表面氧化鋯,均能藉3 MeV鐵離子(Fe2+)的轟擊產生相變化,且產生相變化所需的劑量只需1×1014 ions/cm2以上即可達成,顯示重離子給予氧化鋯的能量是高出輕離子許多的,使得氧化鋯較易產生相變化。
至於包覆後的氧化鋯奈米顆粒,在能量1.5 MeV及100 keV氫離子(H+)的所有劑量轟擊皆無法使氧化鋯顆粒產生M→T相變化,但在能量3 MeV的鐵離子(Fe2+)轟擊下,劑量達到1×1016 ions/cm2以上時,即可觀察到氧化鋯由單斜相(Monoclinic)結構轉變為四方相(Tetragonal)結構的相變化行為,由於氫離子(H+)之離子質量明顯小於鐵離子,氫離子遭遇試片中銀原子與氧化鋯分子時遠較容易產生偏折,減低了離子直接正面撞擊氧化鋯的機率,另外相較於使自由表面氧化鋯產生相變化,在銀包覆氧化鋯奈米顆粒中產生M→T相變化所需的劑量是較高的,因為銀包覆奈米氧化鋯中的氧化鋯受到的碰撞之截面積較小,也就是說相同佈植劑量的條件下,每單位體積的氧化鋯受到的離子碰撞的機率較自由表面的氧化鋯顆粒少,造成鐵離子(Fe2+)需要較高佈植劑量才能使氧化鋯產生相變化。
This research aims to investigate the irradiation-induced monoclinic (M)  tetragonal (T) phase transformation of pure M-phase zirconia free standing and nanocladded nano-particles, by using various ion sources and energies. The zirconia nano-particles were isolated and embedded into a non-reacting metal (silver) matrix, named nanocladding, by internal oxidation method, which were constrained by the Ag matrix and then would be sub¬jected to internal, or external hydrostatic pressure, potentially resulting in different variances from free standing zirconia nano-particles. Two separate specimens, i.e. well-prepared M-ZrO2 nano-particles with and without Ag cladded, were sequentially irradiated by using National Electrostatics Corporation 9SDH-II 3MV Tandem Accelerator with 1.5 MeV H+ and 3 MeV Fe2+in Institute of Physics Academia Sinica and High Voltage Engineering Europa 500 kV ion implanter with 100 keV H+ in National Tsing Hua University. The fluencies are from 1×1014 to 1×1016 ions/cm2. These irradiated specimens were studied and characterized by using X-Ray diffractometer (XRD) and transmission electron microscopy (TEM).
The results show that the free standing zirconia nano-particles with the size of smaller than 30 nm appear M→T phase transformation after proton implantation with 1.5 MeV and 100 keV energy at the proton doses above 3×1015 ions/cm2, while no phase transformation occurs under the grain size larger than 30 nm. Apparently, there is a size effect of irradiation-induced M→T phase transformation of the free standing M-ZrO2 nano-particles by proton implantation. However, the irradiation-induced M→T phase transformation occurs after Fe2+ ions implantation with 3 MeV energy at the fluencies just above 1×1014 ions/cm2, regardless of the size smaller and larger than 30 nm. It suggests that the heavy ions (Fe2+) transmit much more energies to zirconia nano-particles than light ions (proton), leading to an much easier phase transformation.
As for the zirconia nano-particles cladded by silver, the irradiation-induced M→T phase transformation didn’t occur by proton implantation with 1.5 MeV and 100 keV H+ energies at the fluences up to 1×1017 ions/cm2. However, it occurred M→T by Fe2+ implantation with 3 MeV energy at the fluences above 1×1016 ions/cm2. Since the mass of proton is obviously lighter than Fe2+ ion, the proton is vulnerable to deflect and scatter while encountering Ag atoms and zirconia molecules leading to the probability of colliding with zirconia molecules in the M-ZrO2 nano-particles nanocladded by Ag matrix much smaller than that in the free standing M-ZrO2 nano-particles. Moreover, in contrast to the irradiation-induced M→T phase transformation in the free standing zirconia nanoparticles by Fe2+ implantation, the needed Fe2+ dose for the irradiation-induced M→T phase transformation in the nanocladded M-ZrO2 nano-particles is much higher than that in the free standing M-ZrO2 nano-particles due to the much smaller cross-section area of colliding with M-ZrO2 nano-particles. In other words, the probability of colliding with zirconia molecules in the M-ZrO2 nano-particles nanocladded by Ag matrix is much smaller than that in the free standing M-ZrO2 nano-particles, resulting in higher Fe2+ dose needed to induce M→T phase transformation in the M-ZrO2 nano-particles nanocladded by Ag matrix.
中文摘要 I
英文摘要 II
表目錄 VII
圖目錄 VIII
第一章、前言 1
第二章、文獻回顧 2
2-1離子佈植 2
2-1-1離子佈植的效應 2
2-1-2離子縱深分佈與輻射損傷 3
2-1-3離子佈植模擬 3
2-2氧化鋯的特性與應用 4
2-2-1氧化鋯的基本特性 4
2-2-2氧化鋯的應用 4
2-2-3氧化鋯於離子照射環境下的應用 5
2-3離子誘發氧化鋯相變化 5
2-3-1輕離子照射 5
2-3-2重離子照射 6
第三章、實驗方法與步驟 16
3-1奈米氧化鋯顆粒 16
3-1-1自由表面氧化鋯顆粒 16
3-1-2合金內氧化方式包覆法 16
3-2離子加速器 17
3-2-1 NEC 9SDH-II 17
3-2-2 HVE 離子佈植機 18
3-3實驗分析儀器 18
3-3-1 X-Ray繞射分析 18
3-3-2掃描式電子顯微鏡 19
3-3-3穿透式電子顯微鏡 19
第四章、實驗結果與討論 28
4-1輕離子佈植 28
4-1-1能量100 keV H+佈植於自由表面氧化鋯奈米顆粒 28
4-1-2能量1.5 MeV H+佈植於自由表面氧化鋯奈米顆粒 29
4-1-3能量100 keV H+佈植於銀包覆奈米氧化鋯合金 30
4-1-4能量1.5 MeV H+佈植於銀包覆奈米氧化鋯合金 31
4-2重離子佈植 31
4-2-1能量3 MeV Fe2+佈植於自由表面氧化鋯奈米顆粒 31
4-2-2能量3 MeV Fe2+佈植於銀包覆奈米氧化鋯合金 32
4-3討論 32
4-3-1輕離子佈植於自由表面氧化鋯奈米顆粒 33
4-3-2輕離子佈植於銀包覆奈米氧化鋯合金 34
4-3-3重離子佈植於自由表面氧化鋯奈米顆粒 34
4-3-4重離子佈植於銀包覆奈米氧化鋯合金 35
第五章、結論 61
第六章、未來研究方向 62
參考文獻 63
[1] E. H. Kisi and C. J. Howard, Engineering Materials, 153/154 (1998) 1-36.
[2] R. H. J. Hannink, M. J. Murray, H. G. Scott, Wear, 100 (1984) 355-366.
[3] A. D. Brailsford, M. Yussouff, and E. M. Logothetis, Sensors and Actuators, 44 (1997) 321-326.
[4] D. Gosset, M. Dollé, D. Simeone, G. Baldinozzi and L. Thomé, Journal of Nuclear Materials, 373 (2008) 123-129.
[5] K. Negita and H. Takao, J. Phys. Chem. Solids, 50 (1989) 325-331.
[6] P. Bourguet, J. M. Dupart, and E. Tiran, P. Auvary, A. Guivarc’h, M. Salvi, and G. Pelous, P. Henoc, J. Appl. Phys, 51 (1980) 61-69.
[7] A. D. Marwick and R. C. Piller, Rad. Eff., 47 (1980) 195-201.
[8] R. E. J. Watkins, Rad. Eff., 84 (1984) 27-43.
[9] R. Schork, P. Pichler, A. Kluge, and H. Ryssel, Nucl. Instr. and Meth. B, 59/60 (1991) 499-503.
[10] G. Dearnaley, Rad. Eff., 63 (1982) 25-37.
[11] R. Wei, P. J. Wilbur, O. Ozturk and D. L. Williamson, Nucl. Instr. and Meth. B, 59/60 (1991) 731-736.
[12] D. L. Williamson, O. Ozturk, S. Glick, R. Wei, and P. J. Wilbur, Nucl. Instr. and Meth. B, 59/60 (1991) 737-741.
[13] Y. Miyagawa, M. Ikeyama, K. Saitoh, S. Nakao, and S. Miyagawa, Surf. Coat. Technol., 83 (1996) 275-279.
[14] R. Sizmann, J. Nucl. Mater., 69/70 (1978) 386-412.
[15] Y. Adda, M. Beyeler and G. Brebec, Thin Solid Films, 25 (1975) 107-156.
[16] G. J. Dienes and A. C. Damask, J. Appl. Phys., 29 (1958) 1713-1721.
[17] K. C. Russel, Proger. Mat. Sci. 28 (1984) 229-434.
[18] T. R. Anthony, Radiation Induced Voids in Metals, National Technical Information Service, Springfield, (1972) p. 630.
[19] R. A. Johnson and N. Q. Lam, Phys. Rev. B, 13 (1976) 4364-4375.
[20] R. A. Johnson and N. Q. Lam, Phys. Rev. B, 15 (1977) 1794-1800.
[21] N. Q. Lam, P. R. Okamoto, and R. A. Johnson, J. Nucl. Mater., 78 (1978) 408-418.
[22] P. R. Okamoto, L. E. Rehn, and R. S. Averback, J. Nucl. Mater., 108/109 (1982) 319-330.
[23] J. R. Manning, Bull. Am. Phys. Soc., 23 (1978) 287.
[24] J. R. Manning, Phase Stability During Irradiation, (1981), P. 3.
[25] H. Wiedersich, P. R. Okamoto, and N. Q. Lam, J. Nucl. Mater., 83 (1979) 98-108.
[26] W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer Series in Materials Science, 10 (1991) 33-39.
[27] J. F. Ziegler and J. P. Biersack, Treatise on Heavy-Ion Science, Plenum Press, New York, (1985) pp. 93-129.
[28] J. F. Ziegler and J. P. Biersack, Ion implantation techniques, 10 (1982) 122-156.
[29] F. Qunbo, W. Fuchi, Z. Huiling and Z. Feng, Molecular Simulation, 34 (2008) 1099-1103.
[30] 吳政興,納米級氧化鋯結晶製備,中央大學化工所碩士論文,(1998).
[31] 邱碧秀,電子陶瓷材料,徐氏基金會出版,(1992) 296.
[32] K. Tanabe and T. Yamaguchi, Catal. Today, 20 (1994) 185-197.
[33] P. Charpentier, P. Fragnaud, D. M. Schleich, and E. Gehain, 135 (2000) 373-380.
[34] M. Ragheb, Pressurized Water Reactors, (2010).
[35] D. Simeone, D. Gosset, J. L. Bechade, and A. Chevarier, Journal of Nuclear Materials, 300 (2002) 27-38.
[36] J. A. Valdez, Z. Chi, and K. E. Sickafus, Journal of Nuclear Materials, 381 (2008) 259-266.
[37] A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, M. Nastasi, Nucl. Instrum. and Meth.B, 148 (1999) 211-215.
[38] A. Benyagoub, Nuclear Instruments and Methods in Physics Research B, 206 (2003) 132-138.
[39] A. Benyagoub, Physical Review B, 72 (2005) 1-7.
[40] D. Simeone, J. L. Bechade, D. Gosset, A. Chevarier, P. Daniel, H. Pilliaire, and G. Baldinozzi, Journal of Nuclear Materials, 281 (2000) 171-181.
[41] A. Benyagoub and F. Levesque, Europhys. Lett., 60 (2002) 580-586.
[42] R. Giulian, L. L. Araujo, P. Kluth, D. J. Sprouster, C. S. Schnohr, A. P. Byrne and M. C. Ridgway, J. Phys. D: Appl. Phys., 44 (2011) 155401.
[43] R. Giulian, L. L. Araujo, P. Kluth, D. J. Sprouster, C. S. Schnohr, A. P. Byrne and M. C. Ridgway, J. Phys. D: Appl. Phys., 44 (2011) 155402.
[44] X. L. Yan, J. C. Chen, J. Yu, and J. H. Hu,電工材料,第二期,(2003) 1.
[45] A. Undisz, U. Zeigmeister, M. Rettenmayr and M. Oechsle, Journal of Alloys and Compounds,438 (2007) 178-183.
[46] D. B. Williams, and C. B. Cater., Transmission Electron Microscopy, Plenum Company, New York, (1996) P. 131.
[47] R. C. Garvie, Journal of Physical Chemistry, 82 (1978) 218-224.
[48] S. Shukla and S. Seal, International Materials Reviews, 50 (2005) 45-64.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔