(3.230.173.249) 您好!臺灣時間:2021/04/18 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝昕耘
研究生(外文):Hsin-Yun Hsieh
論文名稱:熱誘導水產品中二甲胺及甲醛的生成
論文名稱(外文):Heat-induced Formation of Dimethylamine and Formaldehyde in Aquatic Products
指導教授:邱思魁邱思魁引用關係
指導教授(外文):Tze-Kuei Chiou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:甲醛二甲胺氧化三甲胺魷魚
外文關鍵詞:FormaldehydeDimethylamineTrimethylamine oxidesquid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:680
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
甲醛 (formaldehyde, FA) 是普遍存在的一種氣態羰基化合物,其毒性已被國際癌症研究機構 (IARC) 列為人類致癌物質,在食品或原料中偶有違法添加;食品中存在之二甲胺 (dimethylamine, DMA) 則會在人體腸胃道低pH值的環境下,與亞硝酸鹽消化代謝產生致癌性物質亞硝胺 (nitrosoamines) 類化合物。而富含氧化三甲胺 (trimethylamine oxide, TMAO) 之水產品加熱後,TMAO的熱裂解變化會顯著提升FA及DMA含量。本研究針對常燒烤食用的魷魚、鎖管、魚類等三種水產品,探討在160-200oC加熱5-60分鐘,對於TMAO熱裂解與產物生成的影響,同時對照比較開放式 (無密封) 及封閉式 (密封) 加熱系統之差異。結果顯示魷魚在加熱15分鐘內僅小部分TMAO轉變為DMA及FA,TMAO之熱裂解率在此加熱過程中變化23-39%,在60分鐘加熱後TMAO有超過 90% 以上的熱裂解,又以200oC密封加熱後能大幅提升DMA及FA生成率,其含量分別增加85.26 ± 0.56~99.21 ± 1.28及5.46 ± 0.11~9.59 ± 0.08 mol/g之乾物重,相當於濕重最高約含有1490 ppm 之DMA及96.12 ppm 之FA,且加熱時間的延長TMA含量也增加至原來的4-4.7倍,並伴隨不良氣味的產生,因此建議在燒烤水產品的同時以開放式加熱系統為佳;洄游性魚種TMAO之熱裂解變化較頭足類緩慢,其中以60分鐘加熱後秋刀魚TMAO熱裂解率達65-67% 為最高,DMA及FA亦顯著增加至原來的1.5-1.8及1.4倍,其乾重之含量變化為30.56 ± 0.12~37.38 ± 0.50及1.93 ± 0.02~2.11 ± 0.03 mol/g,相當於濕重最高約含有561.70 ppm 之DMA及22.32 ppm 之FA。而所有水產品中,以200oC烘烤至60分鐘阿根廷魷胴肉之TMAO熱裂解率最高,密封及無密封系統加熱之分解率達94及95%,FA及DMA之生成量以200oC有密封加熱60分鐘之赤魷胴肉9.59 ± 0.08及99.21 ± 1.28 mol/g之乾物重而達最大,其中60分鐘加熱後的FA增加速率以鎖管上升至原來的2-2.4倍最為顯著,達5.30 ± 0.10~7.01 ± 0.25 mol/g之乾物重含量。
由本研究中得知,各種水產品隨加熱溫度增加及時間延長,TMAO之熱裂解變化會逐漸上升,又以頭足類之熱裂解率顯著大於洄游性魚種,其中DMA及FA生成率以富含TMAO之種類變化較為明顯,並會在加熱60分鐘後產生大量的DMA及FA,而隨TMAO含量的減少,其TMA、DMA及FA變化量會隨之增加,且三者之變化關係皆成一定之比例。

Formaldehyde (FA) is the most widespread gas-phase carbonyl compound in the environment and the toxic aldehydes classified “as carcinogenic to humans” by the International Agency for Research on Cancer (IARC). It is illegal to add in foods and ingredients occasionally; Dimethylamine (dimethylamine, DMA) and nitrite are in foods that can digest and metabolism to produces the carcinogenic nitrosamines (nitrosoamines) compounds at the low pH environment of human gastrointestinal tract via. And rich in trimethylamine oxide (trimethylamine oxide, TMAO) of aquatic products after heated, the thermal pyrolysis of TMAO pyrolysis will significantly improve FA and DMA content. In this study, for regular barbecue eating squid, neritic squid and fish three kinds of aquatic products, investigated that the 160-200oC heated for 5-60 minutes, for the influence of products on TMAO pyrolysis generated, and comparison of the open (unsealed) and closed (sealed) heating system while the differences simultaneously. Results the squids only a small part of TMAO have been transformed into DMA and FA within 15 minutes heated, The thermal degradation rate of TMAO this heating process changes only 23-39%, more than 90% of TMAO pyrolysis after heated for 60 minutes and in sealed can significantly enhance the DMA and FA formation rate after heated for 200oC. It’s content were increased 85.26 ± 0.56~99.21 ± 1.28 and 5.46 ± 0.11~9.59 ± 0.08 mol/g dry weight basis, equivalent of the highest DMA and FA containing approximately 1490 ppm and 96.12 ppm wet weight basis. TMA also added 4-4.7 times of the original content more significant, moreover the bad orders accompanied. Therefore, proposed that roasted the aquatic products of open heating system at the same time is better. Migratory species of fish in the pyrolysis of TMAO that changes slow over comparatively of cephalopods, among them, Swordfish of TMAO pyrolysis rate were 65-67% for the highest after heating 60 minutes. DMA and FA levels also increased significantly 1.5-1.8 and 1.4 times from the original content. Changes in the content of dry weight basis was 30.56 ± 0.12~37.38 ± 0.50 and 1.93 ± 0.02~2.11 ± 0.03 mol/g, equivalent of the highest DMA and FA containing approximately 561.70 ppm and 22.32 ppm wet weight basis. All aquatic products, the thermal pyrolysis of TMAO in Argentine shortfin squid mantle meats were the highest after broiled at 200oC for 60 minutes. Sealed and unsealed heating system of decomposition rate was 94 and 95%. The production of FA and DMA content in jumbo squid mantle meats was 9.59 ± 0.08 and 99.21 ± 1.28 mol/g dry weight basis in sealed that were heated at 200oC for 60 minutes and up to the maximum, and FA growth rate in neritic squid was the most significant from the original to 2-2.4 times after heated for 60 minutes, up to 5.30 ± 0.10~7.01 ± 0.25 mol/g dry weight basis content.
By the studies that, all kinds of aquatic products with the heated temperature and time extended, the pyrolysis of TMAO will gradually increased, and the cephalopods of the thermal pyrolysis rate significantly greater than migratory species of fish. Where the DMA and FA formation rate of changed in the species-rich TMAO that be more obvious, which produced large amounts of DMA and FA after heated for 60 minutes. Along with the decrease in TMAO content, TMA, DMA and FA will increase the amount of change. And the relationship between the change of the three parties Into a certain proportion.

摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
附錄 VIII
壹、 研究背景與目的 1
貳、 文獻回顧 2
一、 氧化三甲胺與其分解產物 2
1.1 氧化三甲胺特性及裂解 2
1.2 氧化三甲胺之熱分解 2
1.3 氣體環境對氧化三甲胺分解之影響 3
1.4 海產食品中的胺類化合物 4
二、 二甲胺之化學性質及分析 4
三、 甲醛之化學性質 5
四、 甲醛之分析方法 6
五、 各種水產品之簡介 7
5.1 魷魚之種類特性及利用 7
5.2 鎖管之種類特性及利用 8
5.3 台灣進口之鱈魚特性及利用 8
5.4 秋刀魚之種類特性及利用 9
5.5 鯖魚之種類特性及利用 9
參、 實驗架構 11
肆、 實驗材料與方法 12
一、 實驗材料 12
二、 化學藥品 12
三、 標準品 12
四、 儀器設備 12
五、 實驗方法 13
5.1 水分測定 13
5.2 萃取物 (extract) 調製 13
5.3 三甲胺測定 13
5.4 氧化三甲胺測定 13
5.5 二甲胺測定 13
5.6 甲醛測定 14
六、 統計分析 14
伍、 結果與討論 15
陸、 結論 21
柒、 參考文獻 22
捌、 附錄 75


中華民國財政部關稅局,2009。中華民國進出口貿易統計。台北。
台灣貝類資料庫,2003。何淑真。取自:http://shell.sinica.edu.tw/
台灣區遠洋魷漁船魚類輸出業同業公會, 1987魷漁業介紹。取自:
http://www.squid.org.tw/index.php?option=com_frontpage&;Itemid=1
台灣省漁業局,2007。中華民國台灣地區漁業年報,台北市。
台灣省漁業局,2012。中華民國台灣地區漁業年報,台北市。
朱玉灼、羅正仁、周照仁,1981。多獲性紅色肉魚類的有效利用。華香園出版社,台北市。pp.111。
江善宗,1994。我國魷魚之加工與市場,1994 年魷魚年鑑。pp.172-180,中華漁業雜誌社,台北。
吳清雄,1990。台灣水產加工業現況專輯,台灣省農林廳漁業局。
吳清熊、周照仁、蔡憲華,1991。水產化學,國立編譯館。華香園出版社,台北市。pp.147。
吳清熊、邱思魁,1996。水產食品學,國立編譯館,台北市。
吳慶豐,1994。魷魚加工業的發展過程。1994 年魷魚年鑑,pp.182-184,中華漁業雜誌社,台北。
邵廣昭,1996。台灣常見魚介貝類圖說(上)(下)。台灣省漁業局,台北市。
原田勝彥、藤本哲夫、山田金次郎,1968。水產動物におけゐホルムアルデヒドとジメチルアミンの生成。水大研報,18: 296-302。
孫寶年、蕭泉源,1981。鯖科魚類組織胺之形成與抑制。中國水產,338: 3-10。
陳再發、蔡萬生、薛月娥,1983。水活性對市售水產乾製品保存性之影響,台灣水產學會會誌。35: 234-241.
張為憲、張桂琳、孫超財、葉鎮華、慎鎮泉、賴金華,1973。台灣產幾種重要魚類組成份之記結變化研究,食品工業發展研究報告弟 44 號,pp.12。食品工業發展研究所,新竹。
須山三千三、鸿巢章二、濱部基次、奧田行雄,1980,「イカの利用」,恒星社厚生閣,東京。
須山三千三,小林博文,1980。イカ纇外套筋の游離アミノ酸と4級アンモニウム鹽基の組成。Bulletion of the Japanes Seocietoy of Scientifics Fisheries. 46: 1261-1264.
童逸修,1975。魷纇與其資源開發。JCRR Fisheries Series No.21,農業復興委員會,台北市。
漁業局,1989。漁業推廣專輯 (三)。國立高雄海專漁業推廣委員會,pp.34。
漁業署,2001。台灣地區 90 年漁業年報,台北市,pp. 91-95,375-380。
漁業署,2005。魷魚加工利用,行政院農業委會,台北市。
漁業署,2009。臺灣周邊海域花腹鯖之資源評估分析,行政院農業委會,台北市。
漁業署,2010。台灣地區 99 年漁業年報,台北市,pp.87-91,366-375。
漁業署,2012。臺灣沿近海域火誘網漁業資源之調查評估,行政院農業委會,台北市。
德永俊夫,1975。海產魚介類トリメチルアミンオキサイドの加熱によゐ分解。Bulletion of the Japanes Seocietoy of Scientifics Fisheries. 41: 535-546.
奧田行雄、須山三千三,1980。加工。イカの利用 (須山三千三、鸿巢章二、濱部基次、奧田行雄著),pp.116-204,恒星社厚生閣,東京。
廖正信、李國添、魏良佑,2011。臺灣鯖魚漁業之發展概況。國立臺灣海洋大學環境生物與漁業科學學系,基隆。
蕭泉源、孫寶年,1986。魷魚利用現況與展望,中國水產。397: 27-30.
A.O.A.C., (1984). “Official Methods of Analysis”. Association of Official Analytical Chemists, Washington, D. C.
Ang J. F. and Hultin, H. O. (1989). Denaturation of Cod Myosin during Freezing after Modification with Formaldehyde. Journal of Food Science. 54: 814-818.
Benjakul, S., Visessanguan, W. and Tanaka. M. (2004). Induced formation of dimethylamine and formaldehyde by lizardfish (Saurida micropectoralis) kidney trimethylamine-N-oxide demethylase. Food Chemistry. 84: 297-305.
Bianchi, F., Careri, M., Musci, M. and Mangia, A. (2007). Fish and Food Safety: Determination of Formaldehyde in 12 Fish Species by SPME Extraction and GC-MS Analysis. Food Chemistry. 100:1049-1053.
Castell, C. H., and Smith, B. (1973). Measurement of formaldehyde in fish muscle using TCA extraction and the Nash reagent. Journal of Fisheries Board of Canada. 30: 91-98.
Chiu, T. S. and Chen C. S. (1995). Distribution of scombroid larvae (Pisces: Scombridae) in the waters around Taiwan. Journal of Fish science. 22: 303-312.
Chung, S. W. C. and Chan, B. T. P. (2009). Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Additives and Contaminants. 2: 44-51.
Coad, B. W. and Reist, J. D. (2004). Annotated list of the arctic marine fishes of Canada. Canadian Journal of Fisheries Aquatic Science. 2674. pp.112.
Goll, D. F., Robson, R. M. and Stromer, M. H. (1977). Muscle proteins. In “Food Protein”, Eds. Whitaker, T. R. and Tannenbaum, S. R. pp.121.
Ding, L., Chen, L. G., Jin, H. Y., Xu, H. Y., Sun, L., Yu, A. M. and Zhang, H. Q. (2009). Microwave-Assisted Extraction Coupled Online with Derivatization, Restricted Access Material Cleanup, and High-Performance Liquid Chromatography for Determination of Formaldehyde in Aquatic Products. Journal of Agricultural Food Chemistry. 57: 3898-3994.
Duong, A., Steinmaus, C., Mchale, C. M., Vaughan C. P. and Zhang L. (2011). Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutation Research.728:118-138.
Fu, X. Y., Xue, C. H., Miao, B. C., Liang, J. N., Li, Z. J., and Cui, F. (2006). Purification and characterization of trimethylamine-N-oxide demethylase from jumbo squid (Dosidicus gigas). Journal of Agricultural and Food Chemistry. 54: 968-972.
Fukushima, S. and Uesugi, K. (1979). Synoptic analysis of migration and fishing conditions of saury [Cololabis saira] in the northwest Pacific Ocean. The Agriculture, Forestry and Fisheries Research Information Technology Center. No.40. pp.1-70.
Froese, R. and Pauly, D. (2010). FishBase. World Wide Web electronic publication. (http://www.fishbase.org).
Gou, J., Lee, H. Y., and Ahn, J. (2010). Effect of high pressure processing on the quality of squid (Todarodes pacificus) during refrigerated storage. Food Chemistry. 119: 471-476.
Hayen, H., Vogel, M. and Karst, U. (2003). Recent Developments in the Determination of Formaldehyde in Air Samples Using Derivatizing Agents. Gefahrstoffe Reinhaltung der Luft. 63: 295-298.
Hultin, H. O. (1992). Trimethylamine N-oxide (TMAO) demethylation and protein denaturation in fish muscle. In “Advances in Seafood Biochemistry” , Eds. Flick, J. R. and Martin, R. E. pp.25-42. Technomic Publishing Co., Inc. Pennsylvania.
Huang, W. B. and Chiu, T. S. (1997). Environmental factor associated with the occurrence and abundance of larval porgies, Acanthopagrus latus and Acanthopagrus schlegeli, in the coastal waters of western Taiwan. Acta Zoologica. 8: 19-23.
IARC. (International Agency for Research on Cancer). 2006. Monographs on the Evaluation of Carcinogenic Risks to Humans. 88: Formaldehyde.
King, M. (1995). Fisheries Biology, Assessment and Management. Fish Science. 56: 83-86.
Kolodziejska, I., Niecikowska, C. and Sikorski Z. E. (1994). Dimethylamine and formaldehyde in cooked squid (Illex argentinus) muscle extract and mantle. Food Chemistry. 50: 281-283.
Konosu, S., Watanabe, K. and Shimizu, T. (1974). Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. Bulletion of the Japanes Seocietoy of Scientifics Fisheries. 40: 909-915.
Lavilla, I., Cabaleiro, N., Pena, F., Calle, I. and Bendicho, C. (2011). Liquid-phase microextraction with in-drop derivatization combined with microvolume fluorospectrometry for free and hydrolyzed formaldehyde determination in textile samples. Fod Chemistry 687: 50-55.
Lelance, E. L. and Gill, T. A. (1982). Comparative study of proteolysis in short-finned (Illex illecebrosus) and long-finned (Loligo pealei Leseur) squid. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 73: 201-209.
Liteplo, R. G. and Meek, M. E. (2003). Inhaled formaldehyde: exposure estimation, hazard characterization, and exposure-response analysis. Journal of Toxicology and Environmental Health. 6: 85-114.
Lin, J. K., Lee, Y. J. and Chang, H. W. (1983). High cencentration of dimethylamine and methylamine in squid and octopus and their implications in tumour aetiology. Food Chemistry. Toxic. 21: 143-149.
Lin, J. K., and Hurng. D. C. (1985). Thermal conversion of trimethylamine-N-oxide to trimethylamine and dimethylamine in squids. Food and Chemical Toxicology. 23: 579-583.
Lin, J. K. and Hurng, D. C. (1989). Protentiation of ferrous sulphate and ascorbate on the microbial transformation of endogenous trimethylamine N-oxide to trimethylamine and dimethylamine in squid extracts. Food Chemistry. Toxic. 27: 613-61.
Lin, J. K. and Ho, Y. S. (1992) Hepatotoxicity and hepatocarcinogenicity in rats fed squid with or without exogeneous nitrite. Food and Chemical Toxicology. 30: 695-702.
Lin, J. K., Ho Y. S. and Lin-Shiau, S. Y. (1984). Abundance of dimethylamine in seafoods: Possible implications in the incidence of human cancer. Nutrition and Cancer. 6: 148-159.
Lin, J. K., Chang, H. W. and Shiau, S. Y. (2012). Abundance of dimethylamine in seafoods: Possible implications in the incidence of human cancer. Nutrition and Cancer. 6: 148-159.
Li, J. R., Zhu, J. L. and Jia, J. (2012). Effects of thermal processing and various chemical substances on formaldehyde and dimethylamine formation in squid Dosidicus gigas. Journal of Science Food Agriculture. 92: 2436-2442.
Lundstrom, R. C., Correia, F. F. and Wilhelm, K. A. (1982). Dimethylamine production in fresh red hake (Urophycis chuss): The effect of packaging material oxygen permeability and cellular damage. Journal of Food Biochemistry. 6: 229-241.
Luo, W., Li, H., Zhang, Y. and Ang, C. Y. W. (2001). Determination of Formaldehyde in Blood Plasma by High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Chromatography B. 753: 23-257.
Matthews, T. G., Hawthorne, A. R., Howell, T. C., Metcalfe, C. E. and Gammage R.B. (1982). Evaluation of selected monitoring methods for formaldehyde in domestic environments. Environment International. 8: 143-151.
Matsui, M., Ohshima, H. and Kawabata, T. (1980). Increase in the nitrosoamine content of serveral fish products upon broiling. Bulletion of the Japanes Seocietoy of Scientifics Fisheries. 46: 587-590.
Matsui, M., Ishibashi, T. and Kawabata, T. (1984). Precursors of N-nitrosodimethylamine formed in dried squid upon broiling. Bulletion of the Japanes Seocietoy of Scientifics Fisheries. 50: 155-159.
Mykhailo, G.,Vladimir, S., Olha, D., Halyna, K. and Taras, H. (2011). Alcohol oxidase- and formaldehyde dehydrogenase-based enzymatic methods for formaldehyde assay in fish food products. Food Chemistry. 127: 774-779.
Nielsen, M. K. and Jorgensen, B. M. (2004). Quantitative Relationship between Trimethylamine Oxide Aldolase Activity and Formaldehyde Accumulation in White Muscle from Gadiform Fish during Frozen Storage. Journal of Agricultural and Food Chemistry. 52: 3814-3822.
Nitisewojo, P. and Hultin, H. O. (1986). Characteristics of TMAO degrading systems in Atlantic short finned squid (Illex illecebrosus). Journal of Food Biochemistry. 10: 93-106.
Oliva-Teles, M. T., Paiga, P., Delerue-Matos, C. M., and Alvim-Ferraz, M. C. M. (2002). Determination of Free Formaldehyde in Foundry Resins as its 2,4-Dinitrophenylhydrazone by Liquid Chromatography. Analytica Chimica Acta. 467: 97-103.
Oliveira, F. S., Sousa, E. T. and Andrade, J. B. (2007). A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages. Talanta. 73: 561-566.
Orban, E., Nevigato, T., Lena, G. D., Masci, M., Casini, I., Caproni, R. and Rampacci, M. (2011). Totalvolatilebasicnitrogen and trimethylaminenitrogenlevels during ice storage of Europeanhake (Merluccius merluccius): A seasonal and size differentiation. Food Chemistry. 128: 679-682.
Ragnarsson, K. and Regenstein, J. M. (1989). Changes in electrophoretic patterns of gadoid and non-gadoid fish muscle during frozen storage. Journal of Food Science. 54: 819-823.
Sakaguchi, M., Murata, M. and Kawai, A. (1982). Changes in free amino acids and chemistry of fermented fish. Journal of Food Science. 31: 105-110.
Saki, J. and Matsumoto, J. J. (1981). Proteolytic enzymes of squid mantle muscle. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 68: 389-395.
Santos, E. E. M. and Regenstein, J. M. (1990). Effects of vaccum packaging, glazing and erythorbic acid on the shelf-life of frozen white hake and mackerel. Journal of Food Science. 55: 67-70.
Sawicki, E. and Carnes, R. A. (1986). Spectrophotofluorimetric determination of aldehydes with dimedone and other reagents. Chemistry and Materials Science. 56: 148-159.
Shewan, J. M. (1951). The chemistry and metabolism of the nitrogenous extractives in fish. Biochem. Society. Symposia. 6: 28-48.
Shigemasa, Y., Yamamoto, M., Hayashi K., Sashiwa, H., and Saimoto, H. (1990). Influence of Foreign Substances on the Photometric Determination of Formaldehyde with Chromotropic Acid, Chemistry Express, 5: 289-292.
Synowiecki, J. and Sikorski, Z. E. (1988). Heat induced changes in thiol groups in squid proteins. Journal of Food biochemical. 12: 127-135.
Taylor, S. L. (1990). Other microbial intoxication. In: Foodborne disease. Cliver, D. C. (Eds.) Academic press, London. 160-170.
Teerhnk, T., Hennekes, W. T., Mulder, C. and Brulez, F. H. (2002). Determination of dimethylamine in biological samples by highperformance liquid chromatography. Journal of Chromatography B. 691: 269-276.
Tian, J., Yu, J., Chen, X. and Zhang, W. (2009). Determination and quantitative analysis of acetoin in beer with headspace sampling-gas chromatography. Food Chemistry. 112: 1079-1083.
Tricker, A. R. and Preussmann, R. (1991). Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutation Research. 259: 277-289.
Vanderhaegen, B., Neven, H., Verachtert, H. and Derdelinckx, G. (2006). The chemistry of beer aging - a critical review. Food Chemistry. 95: 357-381.
Wang, S., Cui, X. J. Fang, G. Z. and Jiang, L. (2007). Kinetic spectrophotometric method for rapid determination of trace formaldehyde in foods. Analytica Chimica Acta. 590: 253-259.
Wakefield, J. C. (2008). Formaldehyde-General information. Report by Health Protection Agency,Hazards and Poisons Division Hazard Quotient. Version 1.
Wekell, J. C. and Barnett, H. (1991). New method for analysis of trimethylamine oxide using ferrous sulfate and EDTA. Journal of Food Science. 56: 132-135.
Wu, P. W., Chang, C. C. and Chou S. S. (2003). Determination of Formaldehyde in Cosmetics by HPLC Method and Acetylacetone Method. Journal of Food and Drug Analysis. 11: 8-15.
Weng, X., Chan, H. C., Hai, J. and Li, D. Q. (2009). Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chemistry. 114: 1079-1082.
World Health Organization. (1991). Formaldehyde, Environmental Health Criteria, Geneva.
Yamagata, M., Horimoto, K. and Nagaoka C. (1969). Assessment of green tuna: Determining trimethylamine oxide and its distribution in tuna muscle. Journal of Food Science. 36: 52-58.
Yasri, N. G., Seddik, H. and Mosallb, M. A. (2011). Spectrophotometric determination of formaldehyde based on the telomerization reaction of tryptamine. Arabian Journal of Chemistry. 64: 142-150.
Zanjanchi, M. A., Arvand, M., Bozorgzadeh, E. and Shariati, S. (2012). Ionic liquid-based dispersive liquid-liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Food Science and Technology. 19: 49-58.
Zeisel, S. H., Costa, K. A. and Vrbanac, J. J. (2004). The measurement of dimethylamine, trimethylamine, and trimethylamine N-oxide using capillary gas chromatography-mass spectrometry. Analytical Biochemistry. 187: 234-239.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔