跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳圖昇
研究生(外文):Too Shen Tan
論文名稱:Chitinbacter tainanensis 水解不同類型幾丁質製備N-乙醯葡萄胺糖之探討
論文名稱(外文):The productin of N-acetyl-D-glucosamine from different type of chitin by Chitinbacter tainanensis
指導教授:蔡敏郎蔡敏郎引用關係劉昭麟劉昭麟引用關係
指導教授(外文):Min-Lang TsaiZhao-lin Liu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:Chitinbacter tainanensisN-乙醯葡萄胺糖α-幾丁質β-幾丁質膨發膨發槍
外文關鍵詞:Chitinbacter tainanensisN-acetyl-glucosamine (NAG)α-Chitinβ-ChitinPuffingPuffing gun
相關次數:
  • 被引用被引用:6
  • 點閱點閱:536
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
Chitinbacter tainanensis已被證實能夠將幾丁質分解為N-乙醯葡萄胺糖(NAG)。本研究目的為製備不同類型的幾丁質並做為碳源,再以C. tainanensis降解這些幾丁質,探討幾丁質分子鏈結構和空間結構對其分解效率的影響。α-和β-幾丁質分別於水分含量75%、50%和35%下,以壓力9 kg/cm2進行膨發,之後藉由FT-IR、XRD、色差儀等分析膨發作用對幾丁質物化特性之影響。結果顯示,無論是α-或β-幾丁質之去乙醯程度 (DD) 會隨著水分含量的增加而上升。在其顏色會隨著水份含量的降低,變化更加明顯。同時測定其總體密度和粒徑的分佈,低水份含量的幾丁質經膨發作用,其總體密度會變小,表示其表面積有變大的現象。未膨發幾丁質的粒徑為60-80 mesh,膨發後幾丁質的粒徑主要是在10-60 mesh,少數比例為大於80 mesh,其分佈在10-60 mesh 的比例會隨著膨發水份含量的增加而增加,而分佈在大於80 mesh的比例會隨著水份膨發水份含量的增加而減少。進一步以SEM觀察其表面構造,在低水份含量膨發的組別,其孔洞有明顯的增加且孔洞較大。結晶度方面,膨發作用對α-幾丁質之結晶構造破壞較β-幾丁質明顯,且膨發的水份含量越低,對結晶構造的破壞越大。
無論是α-或β-幾丁質於不同水份含量下膨發後,相較未膨發的幾丁質皆能夠有效的被C. tainanensis所利用。以水份含量75%膨發後的α-幾丁質作為碳源培養,其NAG轉化率相較控制組有明顯增加。此外,以膨發後的幾丁質作為碳源,培養至72小時,其酵素活性和菌體生質量皆高於未膨發的幾丁質。然而使用從菌體殘骸分離出的酵素進行水解幾丁質,結果顯示以膨發作用的幾丁質之水解效率較高,當中以35%的組別之水解作用最佳。

It has been confirmed that Chitinbacter tainanensis could hydrolysed chitin to perform N-acetyl-glucosamine (NAG) production. In this study, different type of chitin were prepared and were used as substrate for C. tainanensis to study the influence of molecular chain and spatial structure of chitin on degradation. α-Chitin and β-chitin were tempered to 75%, 50% and 35% moisture content and equilibrated at 25℃ then being puffed in a puffing gun. The effect of puffing to chitin were analyzed by FT-IR, XRD and so on. The results showed that the degree of deacetylation were raised with increasing moisture content both in α-chitin and β-chitin. The color values of chitin were significantly changed with the decreased of puffed moisture content. The bulk density were also significantly decreased with the decreased of puffed moisture content. The particle size of unpuffed chitin was 60-80 mesh. The particle size of puffed chitin was major in 10-60 mesh, minor below 80 mesh. The proportion of 10-60 mesh fraction was raised with increasing the moisture content. However, the proportion of below 80 mesh fraction was decreased with increasing the moisture content. The particle size of puffed chitin with lower moisture content were mostly distributed below 80 mesh and the puffed β-chitin had a significantly changed. The hole on surface of chitin were became bigger and increase with the decreased of puffed moisture content were observed by scanning electron microscopy. The result of XRD showed that the crystal structure of α-chitin were significantly destroyed than β-chitin after being puffed. The crystal structure of puffed chitin was strongly destroyed with a lower moisture content.
Moreover, this study suggested that either puffed α-chitin or β-chitin with different moisture content was more easily utilized by C. tainanensis than the unpuffed chitin. Meanwhile, there was a significantly increased of conversion rate of NAG was produced by cultivated with puffed α-chitin with 75% moisture content after 72 hours. Although -chitin were not easily utilized, it can be improved by treatment of puffing. Besides, the activity of enzyme and biomass were increased by cultivated with puffed chitin. Meanwhile, it can be observed that a high production of NAG from puffed chitin with 35% moisture content by the isolated enzyme.

目次

摘要 I
Abstract II
目次 III
圖目次 VI
表目次 VIII
附錄 IX
1. 緒論 1
1.1. 前言 1
1.2. 研究目的 1
2. 文獻回顧 2
2.1. 幾丁質的簡介 2
2.2. 幾丁質的結構 2
2.3. 幾丁質的製備 2
2.4. 幾丁質的降解方法 3
2.4.1. 化學法 3
2.4.2. 酵素法 3
2.4.3. 物理法 3
2.4.4. 製備NAG之方法 4
2.5. 常見的水解酵素 4
2.5.1. 專一性酵素 4
2.5.2. 非專一性酵素 4
2.5.3. 幾丁質水解酵素 4
2.6. 幾丁質水解酵素的純化分析 5
2.7. 幾丁質水解酵素的活性分析 6
2.7.1. 還原糖法 6
2.7.2. 螢光法 6
2.7.3. 紫色幾丁質法 6
2.7.4. 電泳膠片檢測法 7
2.8. 幾丁質結晶度的分析 7
2.9. 幾丁質和其水解產物的功能與應用 7
2.9.1. 提高免疫力 7
2.9.2. 促進凝血作用和傷口癒合 8
2.9.3. 抗氧化性 8
2.9.4. 抗腫瘤活性 8
2.9.5. N-乙醯葡萄胺糖(NAG)的應用 8
2.9.6. 幾丁寡糖的應用 9
2.10. 膨發 9
2.10.1. 影響膨發的因子 10
2.10.2. 膨發應用 10
2.10.2.1. 膨發乾燥 10
2.10.2.2. 爆米香和穀物 10
2.10.2.3. 人蔘膨發產品 10
2.10.2.4. 大豆膨發產品 11
3. 實驗架構 12
4. 材料與方法 13
4.1. 實驗材料 13
4.2. 藥品 13
4.3. 儀器設備 13
4.4. 實驗方法 15
4.4.1. 幾丁質的製備 15
4.4.1.1. α-幾丁質的製備方法 15
4.4.1.2. β-幾丁質的製備方法 15
4.4.1.3. 膠狀幾丁質 (colloid-chitin) 的製備方法 15
4.4.2. 幾丁質的膨發 15
4.4.3. 幾丁質去乙醯化程度的測定 16
4.4.4. 幾丁質色差檢測 16
4.4.5. 幾丁質總體密度和膨發比例測定 17
4.4.6. 幾丁質敲擊密度測定 17
4.4.7. 幾丁質粒徑分佈測定 17
4.4.8. 幾丁質表面微細構造之觀察 17
4.4.9. 幾丁質結晶度測定 17
4.4.10. 實驗菌株 18
4.4.10.1 菌種 18
4.4.10.2. 菌種保存 18
4.4.10.3. 菌種活化 18
4.4.11. 以搖瓶法培養菌種分解幾丁質: 18
4.4.12. 幾丁質水解酵素活性分析 19
測量NAGase活性 19
4.4.13. NAG產率測定 19
4.4.14. 菌體生質量之測定 20
4.4.15. 幾丁質水解產物分析 20
4.4.16. 幾丁質水解酵素之分離純化 21
4.4.17. 蛋白質濃度測定 21
4.4.18. 分離之酵素水解幾丁質 21
4.4.19. 統計分析 21
5. 結果與討論 22
5.1. 不同類型幾丁質之物化性質 22
5.1.1. 膨發作用對幾丁質官能基團之影響 22
5.1.2. 膨發作用對幾丁質去乙醯程度之影響 22
5.1.3. 膨發作用對幾丁質顏色之影響 23
5.1.4. 膨發作用對幾丁質顆粒密度和粒徑分佈之影響 23
5.1.5. 膨發作用對幾丁質結構型態之影響 24
5.1.6. 膨發作用對幾丁質結晶程度之影響 24
5.2. 不同類型幾丁質對Chitinbacter tainanensis水解幾丁質效率之影響 25
5.2.1. 不同類型幾丁質對NAGase活性之變化 25
5.2.2. 不同類型幾丁質對糖度之變化 25
5.2.3. 不同類型幾丁質對NAG轉化率之變化 26
5.2.4. 不同類型幾丁質對菌體生長之影響 26
5.3. 不同類型幾丁質對菌體之分離酵素水解幾丁質效率之影響 27
5.3.1. 菌體分離之酵素特性 27
5.3.2. 分離酵素之NAG水解率 27
6. 結論 29
7. 參考文獻 30
8. 圖 36
9. 表 63
10. 附錄 69

圖目次

圖一、不同水分含量膨發後a-幾丁質之紅外光圖譜 36
圖二、不同水分含量膨發後b-幾丁質之紅外光圖譜 37
圖三、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發作用後的a-幾丁質 38
圖四、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發作用後的b-幾丁質 39
圖五、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發後的a-幾丁質之掃描式電子顯微圖 (5000倍) 40
圖六、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發後的a-幾丁質之掃描式電子顯微圖 (10000倍) 41
圖七、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發後的a-幾丁質之掃描式電子顯微圖 (20000倍) 42
圖八、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發後的a-幾丁質之X-射線繞射圖譜 43
圖九、不同水份含量 (a) control (b) 75% (c) 50% (d) 35%膨發後b-幾丁質之X-射線繞射圖譜 44
圖十、N-醯葡萄胺糖酶之標準檢量線 45
圖十一、以不同水份含量膨發後a-幾丁質之BH培養基培養Chitinbacter tainanensis 之N-乙醯葡萄胺糖酶活性變化 46
圖十二、以不同水份含量膨發後b-幾丁質之BH培養基培養Chitinbacter tainanensis 之N-乙醯葡萄胺糖酶活性的變化 47
圖十三、以不同水份含量膨發後a-幾丁質粉末BH培養基培養Chitinbacter tainanensis之糖度變化 48
圖十四、以不同水份含量膨發後b-幾丁質粉末BH培養基培養Chitinbacter tainanensis之糖度變化 49
圖十五、Chitinbacter tainanensis培養72小時後之幾丁質水解產物的高效液相層析圖 (a) N-乙醯葡萄胺糖標準品、(b)a-幾丁質水解產物 (c)b-幾丁質水解產物 50
圖十六、未膨發a-幾丁質在MALDI-TOF MS下的圖譜 51
圖十七、Chitinbacter tainanensis培養72小時後之a-幾丁質水解產物在MALDI-TOF MS下的圖譜 52
圖十八、未膨發b-幾丁質在MALDI-TOF MS下的圖譜 53
圖十九、Chitinbacter tainanensis培養72小時後之b-幾丁質水解產物在MALDI-TOF MS下的圖譜 54
圖二十、不同水份含量膨發後a-幾丁質粉末BH培養基培養Chitinbacter tainanensis 72 小時之NAG轉化率 55
圖二十一、以不同水份含量膨發後b-幾丁質粉末BH培養基培養Chitinbacter tainanensis 72小時之NAG轉化率 56
圖二十二、以不同水份含量膨發後a-幾丁質粉末BH培養基培養Chitinbacter tainanensis之菌體生質量變化 57
圖二十三、以不同水份含量膨發後b-幾丁質粉末BH培養基培養Chitinbacter tainanensis之菌體生質量變化 58
圖二十四、蛋白質含量之標準檢量線 59
圖二十五、N-乙醯葡萄胺糖標準品之標準檢量線 60
圖二十六、以Chitinbacter tainanensis菌體殘骸中震盪出的酵素水解不同水份含量膨發後的a-幾丁質之NAG轉化率 61
圖二十七、以Chitinbacter tainanensis菌體殘骸中震盪出的酵素水解不同水份含量膨發後的b-幾丁質之NAG轉化率 62

表目次

表一、不同水份含量膨發後對幾丁質之去乙醯程度的影響 63
表二、不同水份含量對膨發後幾丁質顏色變化之影響 64
表三、不同水份含量下膨發後幾丁質的密度和膨發比例 65
表四、不同水份含量膨發對幾丁質粒徑分佈之影響 66
表五、不同水份含量膨發後幾丁質之結晶程度 67
表六、自菌體殘骸分離NAGase之特性 68

附錄

附錄 一、N-乙醯葡萄胺糖的結構圖 69
附錄 二、Chitinbacter tainanensis BCRC 17254的基本性質 70
附錄 三、Chitinbacter tainanensis培養基配方 71
附錄 四、幾丁質的主要官能基 72


林俊煌(1992)。不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度、膜之物理特性的關係。國立臺灣海洋大學水產食品科學研究所碩士論文,基隆,臺灣。
陳錦坤、陳盈臻、方炳勳、黃冬梨、李政誠和沈宏俊(2007)。 Chitinibacter tainanensis N-乙醯葡萄糖胺酶之研究。幾丁質幾丁聚醣研討會論文專輯,pp.267-271。
曾琳祥(1982)。膨發食品,食品工業,14(5):28-33。
楊學敏(2005)。微生物幾丁質酶的研究和應用。漳州職業技術學院學報,7(1):7-11。
賴茲漢和賴業超(1994)。食品科技辭典,精華出版社,p.1191,臺中,臺灣。
顏文俊(2008)。米製膨化點心之開發與應用。食品資訊,226:18-26。
鐘淑君(2004)。幾丁質分解酵素A1基質結合區刪除及置換之影響。國立臺灣大學植物病理與微生物學系碩士論文,臺北市,臺灣。
Abdou, E. S., Nagy, K. S. A. and Elsabee, M. (2008). Extraction and characterization of chitin and chitosan from local resourses. Bioresource Technology, 99:1359-1367.
Aiba, S. I. (1992). Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. International Journal of Biological Macromolecules, 14(4):225-228.
Aiba, S. I. (1994). Preparation of N-acetylchitooligosaccharides from lysozymic hydrolysates of partially N-acetylated chitosans. Carbohydrate Research, 261(2):297-306.
An, Y. E., Ahn, S. C., Yang, D. C., Park, S. J., Kim, B. Y. and Baik, M. Y. (2010). Chemical conversion of ginsenosides in puffed red ginseng. LWT- Food Science and Technology, 44:370-374.
Baxter, A., Dillon, M. and Anthony, K. D. (1992). Improved method for determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules, 14:166-169
Binod, P., Pusztahelyi, T., Nagy, V., Sandhya, C., Szakács, G., Pócsi, I. and Pandey, A. (2005). Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid state fermentation. Enzyme and Microbial Technology, 36(7):880-887.
Blair, D. E., and Van Aalten, D. M. (2004). Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Letters, 570(1-3):13-19.
Chen, J. K., Shen, C. R. and Liu, C. L. (2010). N-acetylglucosamine: production and applications. Marine and Drugs, 8:2493-2516.
Chen, J. K., Shen, C. R., Yeh, C. H., Fang, B. S., Huang, T. L. and Liu, C. L. (2011). N-Acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanensis. International Journal of Molecular Sciences, 12(2):1187-1195.
Chen, R. H. Huang, J. R., Tsai, M. L., Tseng, L. Z. and Hsu, C. H. (2011). Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan. Polymer International, 60:897-902
Chern, L. L., Stackebrandt, E., Lee, S. F., Lee, F. L., Chen, J. K. and Fu, H. M. (2004). Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. International Journal of Systematic and Evolutionary Microbiology, 54:1387-1391.
Chien, P. J., Sheu, F., Huang, W. T. and Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102(4):1192-1198.
Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. L., Wu, J. C. and Lin, J. G. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica, 25(7):932-936.
Dagmara, B. and Halina, K. (2010). Study of the influenve OV UV radiation on biodegradable blends based on chitosan and starch. Progress on Chemistry and Application of Chitin and its Derivatives, Volume XV, 2010, pp.17-24.
Domszy, J. G. and Roberts, G. A. F. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Die Makromolekulare Chemie, 186:1671-1677.
Dong, Y., Xu, C., Wang, J., Wu, Y., Wang, M. and Ruan, Y. (2002). Influence of degree of deacetylation on critical concentration of chitosan/dichlorocatic acid liquid crystalline solution. Journal of Applied Polymer Science, 83(6):1204-1208.
Fenice, M., Selbmann, L., Di Giambattista, R., Federici, F. (1998). Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Research in Microbiology, 149:289-300.
Gubareva, L. V., Kaiser, L. and Hayden, F. G. (2000). Influenza virus neuraminidase inhibitors. Lancet, 355:827-835.
Guo, S. H., Chen, J. K. and Lee, W. C. (2004). Purification and characterization of extracellular chitinase from Aeromonas schubertii. Enzyme and Microbial Technology, 35:550-556.
Huan, W., Zhou, Y., Ma, J., Zhou, Y. and Jiang, H. (2013). The effects of phytic acid on the maillard reaction and the formation of acrylamide. Food Chemistry,141:18-22.
Hsu, C. S. and Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of actinmycetes in water and soil. Applied Microbiology, 29:422-426.
Ilankovan, P., Hein, S., Ng, C. H., Trung, T. S. and Stevens, W. F. (2006). Production of N-acetyl chitobiose from various chitin substrates using commercial enzymes. Carbohydrate Polymers, 63(2):245-250.
Imoto, T. and Yagishita, K. (1971). A simple activity measurement of lysozyme. Agricultural Biology and Chemistry, 35:1154-1156.
Kamel, M., Hanafi, N. and Bassiouni, M. (1991). Inhibition of elastase enzyme release from human polymorphonuclear leukocytes by N-acetylgalactosamine and N-acetylglucosamine. Clinical and Experimental Rheumatology, 9:17-21.
Kuk, J. H., Jung, W. J., Hyun, J. G., Ahn, J. S., Kim, K. Y. and Park, R. D. (2005). Selective preparation of N-acetyl-D-glucosamine and N,N'-diacetylchitobiose from chitin using a crude enzyme preparation from Aeromonas sp. Biotechnology Letters, 27:7-11.
Kurita, K. (1998). Chemistry and application of chitin and chitosan. Polymer Degradation and Stability, 59(1-3):117-120.
Lai, H. M. and Cheng, H. H. (2004). Properties of pregelatinized rice flour made by hot air or gum puffing. International Journal of Food Science and Technology, 39:201-212.
Leah, R., Tommerup, H., Svendsen, I. and Mundy, J. (1991). Biochemical and molecular characterization of three barley seed proteins with antifungal properties. Journal of Biological Chemistry, 266(3):1564-1573
Lee, S. J., Moon, T. W. and Lee, J. H. (2010). Increases of 2-furanmethanol and maltol in Korean red ginseng during explosive puffing process. Journal of Food Science, 75:147-151.
Lee, S. W. and Lee, J. H. (2009). Effects of oven-drying, roasting and explosive puffing process on isoflavone distributions in soybeans. Food Chemistry, 112:316-320.
Li, Y. L., Wu, S. T., Yu, S. T. and Too, J. R. (2005). Screening of a microbe to degrade chitin. Taiwanese Journal of Agricultural Chemistry and Food Science, 43:410-418
Liu, C. L., Shen, C. R., Hsu, F. F., Chen, J. K., Wu, P. T., Guo, S. H., Lee, W. C., Yu, F. W., Mackey, Z. B., Turk, J. and Gross, M. L. (2009). Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii. Biotechnology Progress, 25:124-131
Maeda, M., Murakami, H., Ohta, H. and Tajima, M. (1992). Stimulation of IgM production in human-human hybridoma HB4C5 cells by chitosan. Bioscience, Biotechnology and Biochemistry, 56(3):427-431.
Miller, G. L. (1959). Use of dinitrosalic acid reagent for determination of reducing sugar. Analytical Chemistry, 31:426-428.
Minke, R. and Blackwell, J. (1987). The structure of -chitin. Journal of Molecular Biology, 120(2):167-181.
Patil, R. S., Ghormade, V. and Deshpande, M. V. (2000). Chitinolytic enzymes: an exploration. Enzyme and Microbial Technology, 26:473-483.
Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J. and Du, Y. (2006). Water solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63(3):367-374.
Qin, C., Zhou, B., Zeng, L., Zang, Z., Liu, Y., Du, Y. and Xiao, L. (2004). The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chemistry, 84:107-115.
Rinaudo, M. (2006). Chitin and chitosan applications. Progress in Polymer Science, 31(7):603-320.
Robbins, P. W., Albright, C. and Benfield. B. (1988). Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. Journal of Biological Chemistry, 263:443-447.
Rudall, K. M. and Kenchington, W. (1973). The chitin system. Biological Reviews, 40:597-636.
Salvatore, S., Heuschkel, R., Tomlin, S., Davies, S. E., Edwards, S., Walker-Smith, J. A., French, I., Murch, S. H. (2000). A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 14:1567-1579.
Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama, A., Muraki, E., Sukwattanasinit, M., Pichyangkura, R. and Aiba, S. (2003). Enzymatic production of N-acetyl-D-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing crude enzymes. Carbohydrate Research, 51(4):391-395.
Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama, A., Muraki, E., Hiraga, K., Oda, K. R. and Aiba, S. (2002). Production of N-acetyl-D-glucosamine from alpha-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydrate Research, 17:761-763.
Shahidi, F., Arachchi, K. V. and Jen, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science Technology, 10:37-51.
Shen, C. R., Chen, Y. S., Yang, C. J., Chen, J. K. and Liu, C. L. (2010). Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. Journal of Biomolecular Screening, 15:213-217.
Shibata, Y., Foster, L. A., Metzger, W. J. and Myrvik, Q. N. (1997). Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine in mice. Infection and Immunity, 65(5):1734-1741.
Shigehiro, H. (1999). Chitin and chitosan as novel biotechnological materials. Polymer International, 48(8):732-734.
Singh, D. K. and Ray, A. R. (1998). Characterization of grafted chitosan films. Carbohydrate Polymers, 36:251-255.
Somers, P. J. B., Yao, R. C., Doolin, L. R., McGowan, M. J., Fakuda, D. S. and Mynderse, J. S. (1987). Method for the detection and quantification of chitinase inhibitors in fermentation broths ; isolation and insect life cycle effect of A82516. Journal of Antibiotics, 40:1751-1756.
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150:76-85.
Stanley, W. L., Watters, G. G., Chan, B. G. and Mercer, J. M. (1975). Lactose and other enzymes bound to chitin with glutaraldehyde. Biotechnology and Bioengineer, XVΠ:315-326.
Struszczyk H. (1987) Microcrystalline chitosan: preparation and properties of microcrystralline chitosan. Journal of Applied Polymer Science, 33:177-89.
Subar, P. and Klokkevold, P. (1992). Chitosan: the hemostatic agent. Dentistry, 13(3):18-21.
Sukwattanasinitt, M., Zhu, H., Sashiwa, H. and Aiba, S. (2002). Utilization of commercial non-chitinase enzymes from fungi for preparation of 2-acetamido-2-deoxy-D-glucose from beta-chitin. Carbohydrate Research, 337(2):133-137.
Tsukada, K., Matsumoto, T., Aizawa, K., Akio, T., Naruse, R., Shigeo, S. and Masuko, S. (1990). Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing lewis lung carcinoma. Cancer Science, 81(3):259-265.
Uragami, T., Tokura, S. (2006). Material Science of Chitin and Chitosan, p.21-30.
United States Pharmacopeial (2012). Acetaminophen in United States Pharmacopeial (USP 35). The United States Pharmacopieal Convention, Rockville, M.D, USA. pp.255-265, 295-301, 801-804, 2029-2033.
Wang, S. L., Lin, C. L., Liang, T. W., Liu, K. C. and Kuo, Y. H. (2008). Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresoure Technology, 100:316-323.
Wang, S. L., Lin, T. Y., Yen, Y. H., Liao, H. F. and Chen, Y. J. (2006). Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research, 341:2507-2515.
Wang, S. L., Liu, C. P. and Liang, T. W. (2012). Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90:1305-1313
Webster, A., Osifo, P. O., Neomagus, H. W. J. P. and Grant, D. M. (2006). A comparison of glycans and polyglycans using solid-state NMR and X-ray powder diffraction. Solid State Nuclear Magnetic Resonance, 30:150-161.
Wiwat, C., Siwayaprahm, P. and Bhumiratana, A. (1999). Purification and characterization of chitinase from Bacillus circulans No. 4.1. Current Microbiology, 39:134-140.
Wood, W. A. and Kellogg, S. T. (1998). Biomass part B lignin, pectin and chitin. Methods in Enzymology, 161:435-422.
Xu, Q. and Liu, J. (2006). Use of N-acetyl-D-glucosamine in treatment of organ lesion related to toxicosis of drugs or chemicals. US Patent NO. 2006281707.
Yamada, H. and Imada, T. (1981). A convenient synthesis of glycol chitin, a substrate of lysozyme. Carbohydrate Research, 92:160-162.
Yoon, S. R., Lee, G. D., Park, J. H., Lee, I. S. and Kwon, J. H. (2010). Ginsenoside composition and antiproliferative vactivities of explosively puffed ginseng (Panax ginseng C. A. Meyer). Journal of Food Science, 75:378-382.
Zhang, H., Du, Y., Yu, X., Mitsutomi, M. and Aiba, S. (1999). Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydrate Research, 320(3-4):257-260.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top