( 您好!臺灣時間:2021/04/23 14:24
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Pin-Yi Yu
論文名稱:台灣龜山島淺海熱泉之烏龜怪方蟹(Xenograpsus testudinatus)的頭胸甲寬、螯長、重量關係及族群生態之研究
論文名稱(外文):Width/Length-Weight relationships of the Xenograpsus testudinatus and population ecology of a shallow hydrothermal vent of Kueishantao Island, Taiwan
指導教授(外文):Jiang-Shiou Hwang
外文關鍵詞:Xenograpsus testudinatusHydrothermal ventTurtle island
  • 被引用被引用:4
  • 點閱點閱:509
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
龜山島位於台灣東北方,在龜首沿岸海域擁有世界少有的淺海熱泉。在這充滿硫化物及酸性熱泉的環境下,產生了天然的毒性使得大多數的生物無法在此生存。相較之下,烏龜怪方蟹在此極端的環境中族群數量及密度卻是相當的高。本論文針對龜山島熱泉區之烏龜怪方蟹進行三個主題的研究:(一) 螃蟹的頭胸甲、體重、及螯長之形態特質測量與性別關係的比較;(二) 螃蟹族群的分佈與熱泉距離的關係,比較不同的熱泉影響範圍內螃蟹族群之改變;(三) 不同捕蟹籠具的捕獲效率研究。本論文實驗所獲得之螃蟹樣本皆由水肺潛水做水下架設籠具進行採集。三次採樣總共捕獲螃蟹 3148 隻,其中 2256 隻為雄性,892 隻為雌性。結果發現不同螃蟹測得最大重量為19.23 g,公蟹之體重(6.10±3.33 g)也明顯大於母蟹之體重(3.73±1.47 g) (p &;lt; 0.001, DF= 2255, Student’s t-test)、最大背甲寬為3.08 cm,公蟹之背甲寬(2.16 ±0.49 cm)明顯大於母蟹之背甲寬(1.89 ± 0.35 cm) (p &;lt; 0.001, DF= 3146, Studens t-test),最大螯長為公蟹2.9 cm,公蟹之螯長(1.26±0.46 cm)也明顯大於母蟹之螯長(0.76±0.17 cm) (p &;lt; 0.001, DF= 2255, Student’s t-test);籠具捕獲公母螃蟹皆無顯著差異(p > 0.05),距離熱液噴口的遠近也會影響螃蟹族群之數量(p &;lt;0.05),怪方蟹的各形質間皆有顯著的關係差異。
Kueishantao Island is located off the northeastern coast of Taiwan. Its surroundings contain over 50 shallow hydrothermal vents where benthic crabs Xenograpsus testudinatus are present in high population density. The present study was aimed to investigate the relationship between width, length and weight in each sex of adult individuals of X. testudinatus. Crabs were randomly selected from samples obtained with three different kinds of traps located at three different distances from the vents, during cruises on August 14th ,September 6th 2011, May 15th 2012 and September 11th 2012. A total of 3148 individuals, including 2256 males and 892 females, were examined for their body weight, length of pincer and width of carapace. Males weighted significantly more than females. Similarly, significant sex differences were noted in both the length of pincer and the width of carapace, with males having longer pincer and wider carapace. Pearson’s correlation showed significant and positive correlations between body weight, width of carapace and length of pincer in male and female individuals respectively. In conclusion, we found relationships between pincer length, body weight and carapace width by using three kinds of traps and three sampling distances.
謝辭 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
壹、 前言 1
一、 龜山島簡介 1
二、 海底火山 2
三、 烏龜怪方蟹 2
四、 國外海底熱泉及熱泉蟹之簡介 4
五、 龜山島海底熱泉 7
六、 龜山島熱泉區之研究概況及發現 8
七、 實驗目的 10
貳、 材料與方法 11
一、 採樣地點選擇 11
二、 漁具捕捉效率 11
三、 形態特質與生態 12
四、 資料分析 15
參、 結果 19
一、 生物形態 19
二、 族群空間分布 20
三、 族群結構 21
四、 籠具選擇 23
五、 相對成長 25
肆、 結論 27
伍、 討論 28
一、 地理環境改變 28
二、 烏龜怪方蟹食性 28
三、 各項形態特質間差異及比較 29
四、 族群分布(空間) 30
五、 族群結構(時間) 31
六、 籠具選擇及採樣誤差 32
七、 烏龜怪方蟹之抱卵與季節性關係 33
八、 後續可行之研究方向概論 34
九、 研究過程中之發現 35
參考文獻 36
附表與附圖 46

Akin S., K. O. Winemiller and F. P. Gelwick. 2003. Seasonal and Spatial Variations in Fish and Macrocrustacean Assemblage Structure in Mad Island Marsh Estuary, Texas. Estuar. Coast Shelf Sci. 57: 269-282.
Al-Mohanna S. Y. and M. N. Subrahmanyam. 2001. Flux of heavy metal accumulation in various organs of the intertidal marine blue crab, Portunus pelagicus (L.) from the Kuwait coast after the Gulf War. Environ. Int. 27: 321-326.
Amiard J. C., C. Amiard-Triquet, S. Barkab, J. Pellerinc, P. S. Rainbowd. 2006. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76: 160-202.
Bachraty C., P. Legendre, D. Desbruyères. 2009. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep-sea res. pt I. 56: 1371-1378.
Bellchambers L. M. and S. de Lestang. 2005. Selectivity of different gear types for sampling the blue swimmer crab, Portunus pelagicus L. Fish. Res. 73: 21-27.
Blackmore G. and B. Morton. 2002. The influence of diet on comparative trace metal cadmium, copper and zinc accumulation in Thais clavigera (Gastropoda : Muricidae) preying on intertidal barnacles or mussels. Mar. Pollut. Bull. 44: 870-876.
Bollinger J. E., K. Bundyb, M. B. Andersonc, L. Milletb, J. E. Preslana, L. Joliboisc, H.-L. Chena, B. Kamathd, W. J. George. 1997. Bioaccumulation of chromium in red swamp crayfish (Procambarus clarkii). J. Hazard. Mater. 54: 1-13.
Canet C., R. M. Prol-Ledesmaa, J. A. Proenzab, M. A. Rubio-Ramosa, M. J. Forrestc, M. A. Torres-Verad, A. A. Rodríguez-Díaze. 2005. Mn-Ba-Hg mineralization at shallow submarine hydrothermal vents in Bahia Concepcion, Baja California Sur, Mexico. Chem. Geol. 224: 96-112.
Canli M. and R. W. Furness. 1993. Toxicity of heavy metals dissolved in sea water and influences of sex and size on metal accumulation and tissue distribution in the norway lobster Nephrops norvegicus. Mar. Environ. Res. 36: 217-236.
Cavanaugh, C. M., Z. P. Mckiness, I.G. Newton, and F. J. Stewart. 2006. Marine chemosynthetic symbioses. Prokaryotes 1:475-507.
Chen C.-T. A., Z. Zengb, F.-W. Kuoa, T. F. Yangc, B.-J. Wanga, Y.-Y. Tud. 2005. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chem. Geol. 224: 69-81.
Childress, J.J. and C.R. Fisher. 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology: an Annual Review 30:337-441.
Colaco A., B. Paco, F. Yves, S. Pierre-Marie, S. Santos. 2006. Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrotherinal vent fields food web. Chemosphere. 65: 2260-2267.
Comita P. B. and R. B. Gagosian. 1983. Membrane lipid from deep-sea hydrothermal vent methanogen: a new macrocyclic glycerol diether. Science. 222: 1329-1331.
Costa, T. M. and M. L. Negreiros-Fransozo. 2002. Population Biology of Uca thayeri Rathbun, 1900 (Brachyura, Ocypodidae) in a Subtropical South American mangrove Area: Results from Transect and Catch-per-unit-effort Techniques. Crustaceana. 75: 1201-1218.
Cunha L., A. Amarala, V. Medeirosa, G. M. Martinsa, F. F.M.M. Wallensteina, R. P. Coutoa, A. I. Netoa, A. Rodriguesa. 2008. Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents. Chemosphere. 71: 1356-1362.
Czerniejewski P. and W. Wawrzyniak. 2006. Seasonal changes in the population structure of the Chinese mitten crab, Eriocheir sinensis (H. Milne Edwards) in the Odra/Oder estuary. Crustaceana 79: 1167-1179.
Dittel A. I., G. Perovich, and C. E. Epifanio. 2008. Biology of the Vent Crab Bythograea thermydron: A Brief Review. Journal of Shellfish Research 27(1):63-77.
Erickson K. L., S. A. Macko, C. L. Van Dover. 2009. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep Sea Res. Part II. 56: 1577-1585.
Falconer C. R., I.M. Davies, G. Topping. 1986. Cadmium in edible crabs (Cancer pagurus L.) from Scottish coastal waters. Sci. Total Environ. 54: 173-183.
Firat O., G. Gök, H.Y. Coğun, T.A. Yüzereroğlu, F. Kargin. 2008. Concentrations of Cr, Cd, Cu, Zn and Fe in crab Charybdis longicollis and shrimp Penaeus semisulcatus from the Iskenderun Bay, Turkey. Environ. Monit. Assess. 147: 117-123.
Fukui Y. 1993. Timing of copulation in the molting and reproductive cycles in a grapsid crab, Gaetice depressus (Crustacea: Brachyura). Mar. Biol. 117: 221-226.
Fukushima M., Tamate H., Nakano Y. 2001. Trace elements in several species of crustaceans of Amami Island Group in Japan determined by activation analysis. J. Radioanal. Nucl. Chem. 249: 481- 488.
Fujita, H. and K. Takeshita. 1979. Tagging technique for tanner crab long-term tag. Bull. Far Seas Fish. Res. Lab. 17:223-226.
Nakano Y. 2001. Trace elements in several species of crustaceans of Amami Island Group in Japan determined by activation analysis. J Radioanal. Nucl. Ch. 249: 481-486.
Hardivillier Y., F. Denisa, M.-V. Dematteib, P. Bustamantec, M. Lauliera, R. Cossond. 2006. Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. 143: 321-332.
Henry M. S., J. J. Childress, D. Figueroa. 2008. Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implications for species distributions. Deep-sea res. pt I. 55: 679-695.
Huber, M. E. 1985. Allometric growth of the carapace in Trapezia (Brachyura, Xanthidae). J. Crustacean Biol.,5(1): 79-83.
Hwang J. S., H. U. Dahms, A. Victor. 2008. Novel nursery habitat of hydrothermal vent crabs. Crustaceana 81: 375-380.
Imazu M. and A. Asakura. 1994. Distribution, reproduction and shell utilization patterns in three species of intertidal hermit crabs on a rocky shore on the Pacific coast of Japan. J. Exp. Mar. Biol. Ecol. 184: 41-65.
Jeng M. S., M.-S. Jeng, P. F. Clark, P. K. L. Ng. 2004. The first zoea, megalopa, and first crab stage of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda : Brachyura : Grapsoidea) and the systematic implications for the varunidae. J. Crustacean Biol. 24: 188-212.
Jeng M. S., N. K. Ng, P. K. L. Ng. 2004. Feeding behaviour: Hydrothermal vent crabs feast on sea 'snow'. Nature 432: 969-969.
Jewett S. C. and A. S. Naidu. 2000. Assessment of heavy metals in red king crabs following offshore placer gold mining. Mar. Pollut. Bull. 40: 478-490.
Johnson, P. T. J. 2003. Biased sex ratios in fiddler crabs (Brachyura, Ocypodidae: a review and evaluation of the influence of sampling method, size class, and sex-specific mortality. Crustaceana. 76: 559-580.
Keller A. A., J. H. Harms, J. C. Buchanan. 2012. Distribution biomass and size of grooved Tanner crabs (Chionoecetes tanneri) from annual bottom trawl surveys (2003–2010) along the U.S. west coast (Washington to California), Deep Sea Res. Part I: Oceanographic Research Papers, 67: 44-54.
Khripounoff A., T. Comtet, A. Vangriesheim, P. Crassous. 2000. Near-bottom biological and mineral particle flux in the Lucky Strike hydrothermal vent area (Mid-Atlantic Ridge). J. marine syst. 25: 101-118.
Laure Corbari, Lucile Durand, Marie-Anne Cambon-Bonavita, Françoise Gaill, Philippe Compère. 2012. New digestive symbiosis in the hydrothermal vent amphipoda Ventiella sulfuris, Comptes Rendus Biologies, 335: 142-154.
Miller R. J. 1980. Design criteria for crab traps. Journal du Conseil 39: 140-147.
Morrissy N.M. and Caputi N (1981) . Use of catchability equations for population estimation of marron, Cherax tenuimanus (Smith) (Decapoda : Parastacidae). Aust. J. Int. Aff. 32 : 213–225.
Ng N. K., J. F. Huang and P. H. Ho. 2000. Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Brachyura: Grapsidae) from Taiwan. National Taiwan Museum special publication series 10:191-199.
Otani T., T. Yamaguchi, T. Takahashi .1997. Population structure, growth and reproduction of the fiddler crab, Uca arcuata (De Haan). Crustacean research. 26: 109-124.
Peng S. H., J. J. Hung, J. S. Hwang. 2011. Bioaccumulation of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan." Mar Pollut Bull. 63: 396-401.
Reinsel K. A. 2004. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 313: 1-17.
Price R. E., J. London, D. Wallschläger, M. J. R.C., T. Pichler. 2012. Enhanced bioaccumulation and biotransformation of as in coral reef organisms surrounding a marine shallow-water hydrothermal vent system, Chem. Geol.
Salmon M. 1987. On the reproductive behavior of the fiddler crab Uca thayeri, with comparisons to U. pugilator and U. vocans: Evidence for Behavioral Convergence. J. of Crustacean Biol. 7: 25-44.
Serafim M. A., R.M. Company, M.J. Bebianno, W.J. Langston. 2002. Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium. Mar. Environ. Res. 54: 361-365.
Sumpton W. and G. Smith. 1990. Effect of temperature on the Emergence, activity and feeding of male and female Sand Crabs (Portunus pelagicus). Mar. and Freshwater Res. 41: 545-550.
Gaudron S. M., S. Lefebvre, A. N. Jorge, F. Gaill. 2012. Florence Pradillon, Spatial and temporal variations in food web structure from newly-opened habitat at hydrothermal vents, Mar. Environ. Res. 77:129-140.
Yorisue T., R. Kado, H. Watanabe, J. T. Høeg, K. Inoue, S. Kojima, B. K.K. Chan,. 2013. Influence of water temperature on the larval development of Neoverruca sp. and Ashinkailepas seepiophila—Implications for larval dispersal and settlement in the vent and seep environments, Deep-Sea Res. Pt. 1: Oceanographic Res. Papers. 71: 33-37.
Tarasov V. G., A.V. Gebrukb, A.N. Mironovb, L.I. Moskalevb. 2005. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol. 224: 5-39.
Thurber, A. R., W. J. Jones, S. Kareen. 2011. Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab. PLoS One. 6(11).
Toullec, J. Y., J. Vinh, J. P. Le Caer, B. Shillito and D. Soyez. 2002. Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron. 23:31-42.
Williams, A. 1980. A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura). Proc. Biol. Soc. Wash. 93:443-472.
李昭興 2002 海底探奇熱液噴泉 科學月刊 33(2):166-171。
許良基。1963。台灣北部龜山島之第四季安山岩。國立台灣大學地質學系研究報告第十期,24-40 頁。
黃將修、李昭興。2003。悠游龜山島 神秘的海底世界。交通部觀光局東北角海岸國家風景區管理處發行。pp.1-103。

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔