跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:金孟良
研究生(外文):Meng-Liang Jin
論文名稱:以微波雷達進行基隆海檻附近海域流場特性觀測研究
論文名稱(外文):Investigation on the Current Field of Coastal Water near Keelung Sill using Microwave Radar
指導教授:董東璟董東璟引用關係
指導教授(外文):Dong-Jiing Doong
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境資訊學系
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:基隆海檻跳躍波痕渦漩微波雷達
外文關鍵詞:Keelung silljump waveeddyMicrowave radar
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本文利用設置於海洋大學濱海建物頂樓的X-band微波雷達系統分析基隆海域之流場特性。藉由雷達回波訊號的傅立葉轉換分析與分散關係式的濾波,可以分析出空間解析度約200公尺的流場分布。藉由佈置於現場的資料浮標與ADCP交互驗證,證實了微波雷達觀測的波高與表面流速的合理性與正確性。

分析2012年8月至2013年4月近8個月的雷達影像,觀測到在基隆嶼東南方海面於乾潮底前後約1小時期間出現逆時針旋轉之渦流,其半徑約為一公里,歷時約2小時,除此,本文亦使用雷達平均回波影像監測基隆海檻上方的跳躍波痕,結果證實在漲、退潮時刻均會出現,漲潮時出現跳躍波痕導致之回波強於退潮時刻,不論是基隆嶼東南側的渦漩或海檻上的跳躍波痕,其生成機制都是受當地潮流與海檻地形交互作用所引起。本文雷達影像的分析結果顯示了在基隆海域深水區(約80 m)之平均流速僅約0.22 m/s,但在基隆海檻上的最大流速可達3 m/s,分析海檻上的流速分布得知最大流速發生於漲潮五分前後,出現在距離基隆嶼1.5公里,水深約20m處。分析垂直海檻測線上的流速分布得知,當流因漲潮從海檻東側向西側流去時會因流經海檻進而產生加速。

In this study, we investigate the current field of coastal water in Keelung using X-band microwave radar which setting ion National Taiwan Ocean University. The current field distribution with the spatial resolution of about 200 meters can be obtained from analyzing radar echo signal by Fourier transform analysis and filtering by dispersion relation. We arrange the radar data with ADCP data and on-site buoy data to confirm the rationality and correctness of microwave radar wave height and surface velocity.

The radar data is collected from August 2012 to April 2013 for analysis. The counterclockwise eddy with a radius of about one kilometer is found in south-east of Keelung Island around the end of the dry tide occurs during one hour. In addition, we found jump wave in average radar image on the Keeling is still during flood tide and ebb tide, and the flood tide is more obvious than the other. The mechanism of eddy and jump wave is the interaction between tide and bathymetry. The result of radar image analysis shows that the averaged current speed in deep water region near Keelung water (approximately 80m) is 0.22 m/s, the maximum current speed in Keelung sill is 3 m/s that occur in the fifth during flood tide at a distance of 1.5km to Keelung Island at depth of about 20km. According analyzing the velocity distribution on sea sill measuring line, we also fund that when current was affected by rising tide and flow from sea sill eastern to western, current would accelerate for thronging sea sill.

謝辭…………………………………………………………………………………………………i
摘要……………………………………………………………………………………………………ii
Abstract………………………………………………………………………………iii
目次…………………………………………………………………………………………………………………...…iv
圖目次…………………………………………………………………………………………………………………v
表目次……………………………………………………………………………………………………….…viii
第一章 前言……………………………………………………………………………………………………………1
1-1研究背景……………………………………………………………………1
1-2文獻回顧……………………………………………………………………2
1-3研究目的……………………………………………………………………3
第二章 微波雷達海象觀測原理…………………………………………………………..………………4
2-1雷達運作原理……………………………………………………………4
2-2雷達海況觀測系統………………………………………………………6
2-3 波與流分析方法….…………………………………………………………8
2-3-1 波浪解析.…………………………………………………………8
2-3-2 海流解析…………………………………………………………9
第三章 雷達觀測結果驗證…………………………………………………………12
3-1 現場驗證儀器介紹…………………………………………………12
3-2 雷達觀測波浪之驗證…………………………………………………14
3-3 雷達觀測海流之驗證……………………………………………………16
3-4 ADCP資料檢視……………………………………………………19
3-5 影響雷達觀測因子………………………………………………………25
第四章 基隆海域潮流特性……………………………………………………34
4-1基隆海域渦漩……………………………………………………………34
4-2基隆深水海域之流速分佈…………………………………………………38
4-3海檻上位置與流速分佈…………………………………………………40
4-3-1海檻上流速分佈…………………………………………………40
4-3-2垂直海檻側線流速分布……………………………………………44
4-4基隆海檻跳躍波痕………………………………………………………49
第五章 結論與建議………………………………………………………56
5-1結論…………………………………………………………….56
5-2 建議…………………………………………………………………57
參考文獻……………………………………………………………………………………………58
附錄………………………………………………………………………………….…………………………60

1. Barber, N. F., F. Ursell, J. Darbyshire, and M. J. Tucker, “A Frequency AnalyserUsed in the Study of Ocean Waves,” Nature, 158(4010), 329-332.1946
2. Borge, J.C.N., K. Reichert., and J. Dittmer., “Use of nautical radar as a wave monitoring instrument,” Coastal Engineering, Vol.37, pp.331-342, 1999.
3. Borge, J.C.N., K. Reichert., and K. Hessner., “ Estimation of the Significant Wave Height with X-Band Nautical Radars, ” OMAE, 1999.
4. Bell, P. S., “Shallow water bathymetry derived from an analysis of X-band marine radar images of waves,” Coastal Engineering, Vol.37, pp.513-527, 1999.
5. Borge, J.C.N., and Soares, C. G., “Analysis of directional wave fields using X-band navigation radar,” Coastal Engineering, Vol.40, pp.375-391, 2000.
6. Crombie D. D., “Doppler Spectrum of Sea Echo at-13.56 MHz,”Nature,4459, pp.681-682, 1955.
7. Gangeskar, R., “Ocean Current Estimated From X-Band Radar Sea Surface Images,”IEEE , Vol.40 , NO.4 ,pp.783-792, 2002.
8. Kuo, Y. Y., Leu, L. G. and Kao, I L., “Directional spectrum analysis and statistics obtained from ERS-1 SAR wave images,” Ocean Engineering ,26, pp. 1125-1144, 1999.
9. Mattie, M. G., and D. L. Harris,“The Use of Imaging Radar in Studing OceanWaves,” Proc.16th Coasal Eng.,ASCE, 174-189. 1978
10. Reichert, K., K, Hessner., and P, Bell., “ Local bathymetry and high resolution current fields retrieved by nautical radar imagery” Engineers Australia, pp.629-634, 2011.
11. Senet C. M., Seemann, J., and Ziemer, F., “An iterative technique todetermine the near surface current velocity from time series of sea surfaceimages,” IEEE, pp.66-72, 1997.
12. Seemann, H.Hatten., C. M.Senet., and F. Ziemer., “Estimation of Surface Wave Spectra from Nautical Radar Image Sequences with a Small Azimuthal Coverage,”IEEE , Vol.2 ,pp.1007-1009, 1999.
13. Wright,F.F “Wave observation by shipboard radar,” Ocean Science andOcean Engineering, Vol.1, pp. 506-514, 1965.
14. Young, I. R., Rosenthal, W., and Ziemer, F., “A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents,” Journal of Geophysical Research, Vol.90, No.C1, pp. 1049-1059, 1985.
15. Drennan, William M., Taylor, Peter K. and Yelland, Margaret J. “Parameterizing the sea surface roughness”.Journal of Physical Oceanography, 35, (5), 835-848,2005.
16. 林家豐, “水深對X-Band雷達估算流速之影響及其修正”國立成功大學碩士論文, 2006
17. 謝佳穎, “利用X波段雷達研究海表面流場-以淡水河口為例”國立台灣大學碩士論文, 2010
18. 吳立中、董東璟、高家俊、莊士賢,“應用岸基測波雷達於方向波譜觀測之研究”,第二十五屆海洋工程研討會論文集,251 -257 頁,2003
19. 林家豐、吳立中、董東璟、高家俊,“應用航海雷達於空間波場觀測之研究-淺水區域流場之分析”,中華民國第二十八屆海洋工程研討會,中山大學,高雄,2006
20. 陳在賦,”基隆嶼海檻之夏季潮流反應的三度空間水文場”國立臺灣海洋大學碩士論文,2004
21. 胡健驊,”海科館週邊海域環境及海氣象互動之監測(物理環境部分)”,國立台灣海洋大學,90 頁,1999
22. 胡健驊,”海洋科技博物館近岸海域之海潮流─基隆嶼海檻之跳躍波痕”,國立台灣海洋大學,51頁,2002
23. 蔡政翰,我國沿海潮流發電評估與發電機組雛型研發,國科會報告,2012
24. 苑瀞丰,” 近岸海洋波浪對海面粗糙度之影響” 國立中央大學碩士論文,2011

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top