(3.230.173.249) 您好!臺灣時間:2021/04/21 04:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪傑
研究生(外文):Jie Hung
論文名稱:副熱帶西太平洋沿岸生態系病毒裂解及微細鞭毛蟲攝食對異營性細菌數量影響之季節變化研究
論文名稱(外文):Seasonal variations of viral - and nanoflagellate - mediated mortality of heterotrophic bacteria in the coastal ecosystem of subtropical western Pacific
指導教授:蔡安益
指導教授(外文):An-Yi Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:沿岸病毒裂解微細鞭毛蟲攝食異營性細菌
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
水體中異營性細菌被病毒裂解或微細鞭毛蟲攝食之相對重要性,對於食物網能量傳遞有著不同的影響。本研究實驗是利用修正過後的稀釋培養法於2011 年4 月至12 月及2012 年4 月至10 月期間估算病毒裂解與微細鞭毛蟲攝食對細菌死亡率所造成的影響。研究期間細菌成長率變化為0.078 h-1 (2011 年四月) 至0.42 h-1 (2011 年九月),並顯示溫度是控制細菌季節性成長率變化之重要因子。此外,微細鞭毛蟲攝食和病毒裂解移除細菌生產量之季節變化各為34 %至68 %及13 %至138 %之間。本研究認為在夏季(特別於7-8 月間),由於有較多的微細鞭毛蟲數量,使得控制細菌生產量的主要因素為攝食作用,並超越病毒裂解的影響。另一方面,病毒裂解被認為是9 月至12 月間主要的細菌生產力移除作用。基於這些研究結果,觀察到本研究海域細菌數量之季節性變化可以利用成長率與被移除率(攝食率+裂解率)來解釋。
Since viral lysis and nanoflagellate grazing differ in their impact on the aquatic food web, it is important to assess the relative importance of both bacterial mortality factors. In this study, an adapted version of the modified dilution method was applied to simultaneously estimate the impact of both viral and nanoflagellate grazing on the mortality of heterotrophic bacteria. A series of experiments was conducted monthly from April to December 2011 and April to October 2012. The growth rates of bacteria were measured and ranged from 0.078 h-1 (April 2011) to 0.42 h-1 (September 2011).Results also suggest that temperature can be important in controlling the seasonal variations of bacterial growth. Furthermore, it appeared that seasonal changes in nanoflagellate grazing and viral lysis could account for 34% to 68% and 13% to 138% of the daily removal of bacterial production, respectively. We are suggesting that nanoflagellates grazing could play a key role in controlling bacterial biomass and might exceed the impact of viral lysis during summer period (July to August), because of the higher abundance of nanoflagellates. On the other hand, viral lysis was identified as the main bacterial mortality cause between September and December. Based on these findings in this study, the observed seasonal variations in bacterial abundance can be explained by the following scenario in which both growth rates and loss rates (grazing + viral lysis) influence the dynamics of the bacteria community.
摘要................I
Abstract............II
目錄................III
表目錄..............V
圖目錄..............VI
第一章 前言...............................................1
1-1 微生物循環圈(Microbial loop)的重要性..................1
1-2 細菌成長率與環境因子之間的關係........................3
1-3 細菌與病毒的關係......................................5
1-4 研究目的..............................................7
第二章 材料與方法.........................................8
2-1 採樣研究地點與時間....................................8
2-2 海水樣本採樣..........................................8
2-3 分析方法..............................................8
2-3-1 修正過後之稀釋培養法 (Modified dilution method).....8
2-3-2 水樣處理及培養......................................10
2-3-3 病毒、細菌、藍綠細菌及微細鞭毛蟲顯微鏡計數..........10
2-3-4 細菌成長率之計算....................................12
2-4 細菌成長量、被攝食量及被裂解量之估算..................13
2-5 統計分析..............................................13
第三章 結果...............................................15
3-1 水文環境季節變化......................................15
3-2 病毒、細菌、藍綠細菌及微細鞭毛蟲數量之季節變化........15
3-3 細菌成長率之季節性變化................................16
3-4 細菌被攝食率之季節性變化..............................17
3-5 病毒裂解細菌能力之季節性變化..........................18
第四章 討論...............................................19
4-1 細菌與病毒之關係......................................20
4-2 稀釋培養法(Dilution method)的應用.....................23
4-3 細菌成長率之季節變化..................................24
4-4 微細鞭毛蟲攝食與病毒裂解之相對重要性..................26
第五章 結論...............................................31
參考文獻..................................................32
Anderson M. R, R. B. Rivkin, 2001. Seasonal patterns in grazing
mortality of bacterioplankton in polar oceans: a bipolar comparison.
Aquatic Microbial Ecology, 25: 195- 206.
Anne H., 1992. Bacterioplankton in a subarctic estuary: the Gulf of
Bothnia (Baltic Sea). Marine Ecology Progress Series, 86: 123- 131.
Almeida M. A., M. A. Cunha, F. Alantara, 2001. Loss of estuarine
bacteria by viral infection and predation in conditions. Microbial
Ecology, 42: 562- 571.
Azam F., T. Fenchel, J. G. Field, L. A. Meyer- Reil, F. Thingstad, 1983.
The ecological role of water column microbes in the sea. Marine
Ecology Progress Series, 10: 257-263.
Baudoux A. C., M. J. W. Veldhuis, H. J. Witte, C. P. D. Brussaard,
2007. Viruses as mortality agents of picophytoplankton in the deep 31
chlorophyll maximum layer during IRONAGES III. Limnology and
Oceanography, 52: 2519-2529.
Bergh O., K. Y. Børsheim, G. Bratbak, M. Heldal, 1989. High
abundance of viruses found in aquatic environments. Nature, 340
(6233): 467- 468.
Bettarel Y., T. Sime-Ngando, C. Amblard, J. F. Carrias, C. Portelli,
2003. Virioplankton and microbial communities in aquatic systems: a
seasonal study in two lakes of differing trophy. Freshwater Biology, 48:
810- 822.
Boehme J., M. E. Frischer, S. C. Jiang, C. A. Kellogg, S. Pichard, J. B.
Rose, C. Steinway, J. H. Paul, 1993. Virus, bacterioplankton, and
phytoplankton in the Southweastern Gulf of Mexico: distribution and
contribution to oceanic DNA pools. Marine Ecology Progress Series,
97: 1- 10.
Boras J. A., M. M. Sala, E. Vázquez- Domínguze, M. G. Weinbauer, D.
Vaqué, 2009. Annual changes of bacterial mortality due to viruses and
protists in an oligotrophic coastal environment (NW Mediterranean).
Environmental Microbiology, 11: 1181- 1193.
Bratbak G., M. Heldal, T.F. Thingstad, B. Riemann, O.H. Haslund, 1992.
Incorporation of viruses into the budget of microbial C- transfer. A first
approach. Marine Ecology Progress Series, 83: 273–280.
Bratbak G., F. Thingstad, M. Hedal, 1994. Viruses and the microbial
loop. Microbial Ecology, 28: 209- 221.
Binder B., 1999. Reconsidering the relationship between virally induced
bacterial mortality and frequency of infected cells. Aquatic Microbial
Ecology, 18: 207- 215.
Carrick H. J., G.L. Fahnenstiel, E.F. Stoermer, R.G. Wetzel, 1991,
The importance of zooplankton-protozoan trophic couplings in Lake
Michigan. Limnoloy and Oceanography, 36: 1135- 1145.
Carlson C. A., H. W. Ducklow, A. F. Michaels, 1994. Annual flux of
dissolved organic carbon from the euphotic zone in the northwestern
Sargasso Sea. Nature, 371: 405- 408.
Cho B. C., F. Azam, 1990. Biogeochemical significance of bacterial
biomass in the ocean’s euphotic zone. Marine Ecology Progress Series,
63: 253- 259.
Choi D. H., C. Y. Hwong, B. C. Cho, 2003. Comparison of virus- and
bacterivory- induced bacterial mortality in the eutrophic Masan Bay,
Korea. Aquatic Microbial Ecology, 30: 117- 125.
Choi J.W. 1994. The dynamic nature of protistan ingestion response to
prey abundance. The Journal of Eukaryotic and Microbiology, 41: 137-
146.
Cochlan W. P., J. Wikner, G. F. Steward, D. C. Smith, D. Azam, 1993.
Spatial distribution of viruses, bacteria and chlorophyll a in neritic,
oceanic and estuarine environment. Marine Ecology Progress Series, 92:
77- 87.
Cole J. J., S. Findlay, M. L. Pace, 1988. Bacterial production in fresh
and saltwater ecosystems: a cross-system overview. Marine Ecology
Progress Series, 43:1-10.
Cole J. J., N. F. Caraco, 1993. The pelagic food web of oligotrophic
lake. In Aquatic Microbiology, Blackwell, 101- 111.
Dolan, J.R., C.L. Gallegos, 1991. Trophic couplings of rotifers,
microflagellates, and bacteria during fall months in the Rhode River
Estuary. Marine Ecology Progress Series, 77: 147- 156.
Dolan J. R., C. L. Gallegos, A. Moigis, 2000. Dilution effects on
microzooplankton in dilution grazing experiments. Marine Ecology
Progress Series, 200: 127- 139.
Ducklow H.W., D.L. Kirchman, 1983. Bacterial dynamics and
distribution during a spring bloom in the Hudson River plume, USA.
Journal of Plankton Research, 5:333- 355.
Ducklow H. W., C. A. Carlson, 1992. Oceanic bacterial production.
Aquatic Microbial Ecology, 12: 113- 182.
Evans C, S. D. Archer, S. Jacquet, W. H. Wilson, 2003. Direct estimates
of the contribution of viral lysis and Microzooplankton grazing to the
decline of a Micromonas spp. Population. Aquatic Microbial Ecology,
30: 207- 219.
Ferrier- Page’s C., F. Rassoulzadegan, 1994. Seasonal impact of the
microzooplankton on pico-and nanoplankton growth rates in the
northwest Mediterranean Sea. Marine Ecology Progress Series, 108:
283- 294.
Findlay S., M.L. Pace, D. Lints, J. Cole, N.F. Caraco, B. Peierls,
1991.Weak coupling of bacterial and algal production in a heterotrophic
ecosystem: the Hudson River estuary. Limnoloy and Oceanography,
362: 268- 278.
Fischer U. R., B. Velimirov, 2002. High control of bacterial
production by viruses in a eutrophic oxbow lake. Aquatic Microbial
Ecology, 27: 1- 12.
Fischer U. R., C. Wieltschnig, A. K. T. Kirschner, B. Velimirov, 2006.
Contribution of virus-induced lysis and protozoan grazing to benthic
bacterial mortality estimated simultaneously in microcosms.
Environmental Microbiology, 8: 1394- 1407.
Fuhrman J. A., 1992. Bacterioplankton roles in cycling of organic matter:
the microbial food web. In: Falkowski PG, Woodhead AD (ed) Primary
productivity and biogeochemical cycles in the sea. Plenum Press, New
York, pp 361-383.
Fuhrman J. A., C. A. Suttle., 1993. Viruses in marine planktonic systems.
Oceanography, 6 (2): 51- 63.
Fuhrman J. A., R. T. Noble, 1995. Viruses and protests cause similar
bacterial mortality in coastal seawater. Limnology and Oceanography,
40 (7): 1236- 1242.
Fuhrman J. A., 1999. Marine viruses and their biogeochemical and
ecological effects. Nature, 399: 541- 548.
Gasol J. M., P. A. Del Giorgio, C. M. Duarte, 1997. Biomass
distribution in marine planktonic communities. Limnology and
Oceanography, 42(6): 1353- 1363.
Goosen N.K., P. van Rijswijk, P. Kromkamp, J. Peene, 1997. Regulation
of annual variation in heterotrophic bacterial production in the Schelde
estuary (SW Netherlands). Aquatic Microbial Ecology, 12:223- 232.
Hara S., K. Terauchi, I. Koike, 1991. Abundance of viruses in marine
water: assessment by epifluorescence and transmission electron
microcopy. Applied and Environmental Microbiology, 57: 2731- 2734.
Hennes K. P., C. A. Suttle, 1995. Direct counts of viruses in natural
water and laboratory cultures by epifluorescence microscopy.
Limnology and Oceanography, 40: 1050- 1055.
Hoch M. P., D. L. Kirchman, 1993. Seasonal and inter- annual
variability in bacterial production and biomass in a temperate estuary.
Marine Ecology Pagress Series, 98: 283- 295.
Hoppe H. G., K. Gocke, R. Koppe, C. Begler, 2002. Bacterial growth
and primary production along a north-south transect of Atlantic Ocean.
Nature, 416: 168- 171.
Jacquet S., I. Domaizon, S. Personnic, A. S. P. Ram, M. Hedal,
S.Duhamel, T. Sime- Ngando, 2005. Estimates of protozoan- and
viral-mediated mortality of bacterioplankton in Lake Bourget (France).
Freshwater Biology, 50: 627- 645.
Keil R.G., D.L. Kirchman, 1991. Contribution of dissolved free amino
acids and ammonium to the nitrogen requirements of heterotrophic
bacterioplankton. Marine Ecology Pagress Series, 73: 1- 10.
Kimmance S. A., C. P. D. Brussaard, 2010. Estimation of
viral-induced phytoplankton mortality using the modified dilution
method. In: Wilhelm S, Weinbauer M, Suttle C (eds) Manual of Aquatic
Viral Ecology. American Society of Limnology and Oceanography, 7:
65-73.
Kirchman D. L., J. H. Rich, R. T. Barber, 1995. Biomass and biomass
production of heterotrophic bacteria along 140° W in the equatorial
Pacific: Effect of temperature on the microbial loop. Aquatic Microbial
Ecology, 37: 23- 32.
Lancelot C., Billen G., 1984. Activity of heterotrophic bacteria and its
coupling to primary production during spring phytoplankton bloom in
the southern bight of the North Sea. Limnol Oceanogr, 29:721- 730.
Landry M. R., R. P. Hassett, 1982. Estimating the grazing impact
of marine microzooplankton. Marine Biology, 67: 283- 288.
Laybourn- parry J., J. S. Hofer, R. Sommaruga, 2001. Viruses in the
plankton of freshwater and saline Antraatic lakes. Freshwater Biology ,
46: 1279- 1287.
Lee S., J. A. Fuhrman, 1987. Relationships between Biovolume and
Biomass of Naturally Derived Marine Bacterioplankton. Applied and
Environmental Microbiology, 53: 1298- 1303.
Liu Y. M., Q. Y. Zhang, X. P. Yuan, Z. Q. Li, J. F. Gui., 2006.
Seasonal variation of virioplankton in a eutrophic shallow lake.
Hydrobiologia, 560: 323- 334.
Maranger R., D. F. Bird, 1995. Viral abundances in aquatic systems: a
comparison between marine and fresh waters. Marine Ecology Progress
Series, 121: 217- 226.
McManus G. B., P. M. Griffin, J. R. Pennock, 2004. Bacterioplankton
abundance and growth in a river- dominated estuary: relationships with
temperature and resources. Aquatic Microbial Ecology, 32: 23- 32.
Murrell M.C., 2003. Bacterioplankton dynamics in a subtropical estuary:
evidence for substrate limitation. Aquatic Microbial Ecology, 32:
239-250.
Noble R. T., J. A. Fuhrman, 1998. Use of SYBR Green I for rapid
epifluorescence counts of marine viruses and bacteria. Aquatic
Microbial Ecology, 14: 113- 118.
Ochs C.A., J.J. Cole, G.E. Liken, 1995. Population dynamics of
bacterioplankton in an oligotrophic lake. Journal of Plankton Reearoh,
17: 365- 391.
Ortmann A. C., R.C. Metzger, J.D. Liefer, L. Novoveska, 2011. Grazing
and viral lysis vary for different components of the microbial
community across an estuarine gradient. Aquatic Microbial Ecology, 65:
143- 157.
Pace M. L., J. J. Cole, 1996. Regulation of bacteria by resources and
predation tested in whole- lake experiments. Limnoloy and
Oceanography, 41: 1448- 1460.
Painchaud J., J.C. Therriault, 1989. Relationships between bacteria,
phytoplankton and particulate organic carbon in the upper St. Lawrence
estuary. Marine Ecology Progress Series, 56: 301- 311.
Personnic S., I. Domaizon, T. Sime- Ngando, S. Jacquet. 2009. Seasonal
variations of microbial abundances and virus-versus flagellate-induced
mortality of picoplankton in three peri-alpine lakes. Journal of plankton
pesearch, 31: 1161- 1177.
Porter K. G., Y. S. Feig, 1980. The use of DAPI for identifying and
counting aquatic microflora. Limnology and Oceanography, 25:
943-948.
Pradeep Ram A. S., D. Boucher, T. Sime- Ngando, D. Debroas, J. C.
Romagoux, 2005. Phage Bacteriolysis, Protistan Bacterivory Potential,
and Bacterial Production in a Freshwater Reservoir: Coupling with
Temperature. Microbial Ecology, 50: 64- 72.
Proctor L. M., J. A.Fuhrman, 1990. Viral mortality of marine bacteria
and cyanobacteria. Nature, 343: 60- 62.
Procter L. M., A. Okubo, J. A. Fuhrman, 1993. Calibrating estimates
of phase-induced mortality in marine bacteria: ultrastuctual studies of
marine bacteriophage development from one-step growth experiments.
Microbial Ecology, 25: 161- 182.
Rejas D., K. Muylaert, L. D. Meester, 2005. Nutrient limitation of
bacteria and sources of nutrients supporting nutrient-limited bacterial
growth in an Amazoniant floodplain lake. Aquatic Microbial Ecology,
39: 57-67.
Sanders R. W., D. A. Caron, U. G. Berninger, 1992. Relationships
between bacteria and heterotrophic nanoplankton in marine and fresh
waters: an inter-ecosystem comparison. Marine Ecology Progress
Series, 86: 1- 14.
Schultz G. E. Jr., E.D. White III, H. W. Ducklow, 2003.Bacterioplankton
dynamics in the York River estuary: primary influence of temperarure
and freshwater inputes. Aquatic Microbial Ecology, 30: 135- 148.
Sherr E., B. Sherr, 1988. Role of microbes in pelagic food webs: a
revised concept. Limnology and Oceanography, 33: 1225- 1227.
Shiah F. K., H. W. Ducklow, 1994. Temperature regulation of
hetrotrophic bacterplankton abundance, production, and specific
growth rate in Chesapeake Bay. Limnology and Oceanography, 39:
1243-1258.
Sieburth J. M., P. W.Johnson, P. E. Hargraves, 1988. Ultrastructure
and ecology of Aureococcus anophagefferens gen. et sp. nov.
(Chrysophyseae): the dominant picoplankter during a bloom in
Narragansett Bay, Rhode Island, Summer 1985. Journal of Phycology,
24: 416- 425.
Šolić M., N. Krstulović, 1994. Role of predation in controlling
bacterial and heterotrophic nanoflagellate standing stocks in the coastal
Adriatic Sea: seasonal patterns. Marine Ecology Progress Series, 114:
219- 235.
Staroscik A. M., D.C. Smith, 2004. Seasonal patterns in bacterioplankton
abundance and production in Narragansett Bay. Rhode Island, USA.
Aquatic Microbial Ecology, 35: 275- 282.
Steward G. F., D. C. Smith, F. Azam, 1996. Abundance and
production of bacteria and viruses in the Bering and Chukchi Seas.
Marine Ecology Progress Series, 131: 287- 300.
Stopar D., A. Eren, M. Zigman, M. Poljsak-Prijatelj, V. Turk, 2004.
Viral abundance and a high proportion of lysogens suggest that viruses
are important members of the microbial community in the gulf of
Trieste. Microbial Ecology, 47: 1- 8.
Suttle C.A., A.M. Chan, 1994. Dynamics and distribution of cyanophages
and their effect on marine Synechococcus spp. Applied and
Environmental Microbialogy, 60: 3167- 3174.
Taira Y., M. Uchimiya, I. Kudo, 2009. Simultaneous estimation of viral
lysis and protozoan grazing on bacterial mortality using a modified
virus-dilution method. Marine Ecology Progress Series, 379: 23- 32.
Tibbles B. J., 1997. Effects of temperature on the relative incur- poration
of leucine and thymidine by bacterioplankton and bacterial isolates.
Aquatic Microbial Ecology, 11: 239- 250.
Tijdens M., D. B. Van de Waal, H. Slovackova, H. L. Hoogveld, H. J.
Gons, 2008. Estimates of bacterial phytoplankton mortality caused by
viral lysis and microzooplankton grazing in a shallow eutrophic lake.
Freshwater Biology, 53: 1126- 1141.
Tremaine S. C., A. L. Mills , 1987. Test of the critical assumptions of
the dilution method for estimating bacteriovory by rnicroeucaryotes.
Applied and Environmental Microbiology, 53: 2914- 2921.
Tsai A. Y., K. P. Chiang, J. Chang, G. C. Gong, 2005. Seasonal diel
variations of picoplankton and nanoplankton in a subtropical western
Pacific coastal ecosystem. Limnology and Oceanography, 50(4):
1221-1231.
Tsai A. Y., K. P. Chiang, Y. F. Chan, Y. C. Lin, J. Chang, 2007.
Pigmented nanoflagellates in the coastal western subtropical Pacific are
important grazers on Synechococcus populations. Journal of Plankton
Reserch, 29: 71- 77
Tsai A. Y., K. P. Chiang, J. Chang, G. C. Gong, 2008. Seasonal variations
in trophic dynamics of nanoflagellates and picoplankton in coastal
waters of the western subtropical Pacific Ocean. Aquatic Microbial
Ecology, 51: 263- 274.
Tsai A.Y., W.M. Chin, K.P. Chiang, 2009. Diel Patterns of Grazing by
Pigmented Nanoflagellates on Synechococcus spp. in the Coastal
Ecosystem of Subtropical Western Pacific. Hydrobiologia, 636 (1):
249- 256.
Tsai A. Y., G. C. Gong, R. W. Sanders, W. H. Chen, C. F. Chao, K. P.
Chiang, 2011. Importance of bacterivory by pigmented and
heterotrophic nanoflagellates during the warm season in a subtropical
western Pacific coastal ecosystem . Aquatic Microbial Ecology, 63: 9-
18.
Tsai A.Y., G. C. Gone, J. K. Huang, Y. Lin, 2013. Viral and nanoflagellate
control of bacterial production in the East China Sea Summer 2011.
Estuarine Coastal and Shelf Science, 120: 33- 41.
Tuomi P., P. Kuuppo, 1999. Viral lysis and grazing loss of bacteria in
nutrient- and carbon- manipulated brackish water enclosures. Journal of
Plankton Reserch, 21: 923- 937.
Umani S. F., E. Malisana, F. Focaracci, M. Magagnini, C. Corinaldesi, R.
Danovaro, 2010. Disentangling the effect of viruses and nanoflagellates
on prokaryotes in bathypelagic waters of the Mediterranean Sea.
Marine Ecology Progress Series, 418: 73- 85.
Vanucci S, D. Minerdi, K. Kadomatsu, A. Mengoni, M. Bazzicalupo,
2005. Putative midkine family protein up-regulation in Patella caerulea
(Mollusca, Gastropoda) exposed to sublethal concentrations of
cadmium. Aquatic Toxicology, 75(4): 374- 379.
Velimirov B., M. Walenta- Simon, 1992. Seasonal changes in
specific growth rates, production and biomass of a bacterial community
in the water column above a Mediterranean seagrass system. Marine
Ecology Progress Series, 80: 237- 248.
Wang K., F. Chen, 2004. Genetic Diversity and Population Dynamics of
Cyanophage Communities in the Chesapeake Bay. Aquatic Microbial
Ecology, 34: 105- 116.
Weinbauer M. G., D. Fuks, P. Peduzzi, 1993. Distribution of viruses
and dissolved DNA along a coastal trophic gradient in the Northern
Adriatic Sea. Applied and Environmental Microbiology 59: 4074-
4082.
Weinbauer M. G., P. Peduzzi, 1994. Frequency, size and distribution
of bacteriophages in different marine bacterial morphotypes. Marine
Ecology Progress Series, 108: 11- 20.
Weinbauer M. G., C. A. Suttle, 1997. Comparison of epifluorescence
and transmission electron microscopy for counting viruses in natural
marine water. Aquatic Microbial Ecology , 13: 225- 232.
Weinbauer M. G., M. G. Höfle, 1998. Significance of viral lysis and
flagellates grazing as factors controlling bacterioplankton production in
a eutrophic lake. Applied and Environmental Microbiology, 64: 431-
438.
Weinbauer M. G., U. Christaki, A. Nedoma, K. Simek, 2003. Comparing
the effects of resource enrichment and grazing on viral production in a
meso-eutrophic reservoir. Aquatic Microbial Ecology, 31: 137-144.
Well L. E., J. W. Deming, 2006. Significance of bacterivory and viral
lysis in bottom water of Franklin Bay, Canadian Artic, during winter.
Aquatic Microbial Ecology, 43: 209- 221.
Weisse T., U. Scheffel- Möser, 1991. Uncoupling the microbial loop:
growth and grazing loss rates of bacteria and heterotrophic
nanoflagellates in the North Atlantic. Marine Ecology Progress Series,
71: 195- 205.
White P., J. Kalff, J. Rasmussen, J. Gasol, 1991. The effect of
temperature and algal biomass on bacterial production and specific
growth rate in freshwater and marine habitats. Microbiology Ecology,
21:99-118.
Wilhelm S. M., S. M. Brigden, C. A. Suttle, 2002. A Dilution
Technique For The Direct Measurement Of Viral Production: a
comparison in stratified and tidally mixed coastal waters. Microbial
Ecology, 43: 168- 173.
Wommack K. E., R. R. Colwell, 2000. Virioplankton:viruses in
aquatic ecosystems. Microbiology and Molecular Biology Reviews, 64:
69- 114.
Worden A. Z., B. J. Binder, 2003. Application of dilution experiments
for measuring growth and mortality rates among Prochlorococcus and
Synechococcus populations in oligotrophic environments. Aquatic
Microbial Ecology, 30: 159-174.
Worden A. Z., B. J. Binder, 2003. Application of dilution experiments
for measuring growth and mortality rates among Prochlorococcus and
Synechococcus populations in oligotrophic environments. Aquatic
Microbial Ecology, 30: 159-174.
Wright R. T., R. B. Coffin, 1984. Measuring microzooplankton
grazing on planktonic marine bacteria by its impact on bacterial
production. Microbial Ecology, 10: 137-149.
Wright R.T., R.B. Coffin, M.E. Lebo, 1997. Dynamics of planktonic
bacteria and heterotrophic microflagellates in the Parker Estuary,
northern Massachusetts. Continental Shelf Research, 7: 1383- 1397.
Xenopoulos M. A., D. F. Bird, 1997. Microwave enhanced staining
for counting viruses by epifluorescence microscopy. Limnology and
Oceanography, 42: 1648- 1650.
翁蓉薇 (2011)臺灣東北部近岸海域秋冬時期病毒對於細菌死亡率影
響之研究初探. 國立臺灣海洋大學海洋環境化學與生態研究所碩
士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔