(3.236.231.14) 您好!臺灣時間:2021/04/15 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊何嘉
研究生(外文):He-Jia Jhuang
論文名稱:整合低成本單頻GPS接收器與九軸慣性感測器求解姿態之研究
論文名稱(外文):Attitude Determination Using Low-Cost Single-Frequency GPS Receivers and Nine-axis Inertial Sensors
指導教授:林修國林修國引用關係
指導教授(外文):Shiou-Gwo Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:GPS姿態九軸慣性感測器模稜函數法
外文關鍵詞:GPSAttitudeNine-axis inertial sensorsAFM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:396
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
全球導航衛星系統(Global Navigation Satellite System,GNSS)目前在商業產品、工程應用、大地測量及遙測技術上已經非常成熟且用途十分廣泛。本論文將利用美國的GPS衛星播送的訊號中獲得電碼與載波相位觀測量,而透過載波相位高精度的特性來求解載具平台的姿態,其方法為利用九軸慣性感測器輔助GPS的載波相位觀測量進行模稜函數法(Ambiguity Function Method,AFM)的快速求解,並在已知基線的約制下,將其搜尋範圍縮減為一個曲面,再利用衛星的差分技術將系統誤差及大氣誤差在短基線下消除後求得高精度的座標分量,並將天線的姿態模型使用混合平差求解姿態角,最後則經由卡爾曼濾波器輸出穩定的姿態角。

本論文包含兩種實驗平台,分別為靜態實驗平台、動態載具實驗平台,而平台上則放置三個單頻GPS接收機陣列來進行姿態的實驗,並在不同長度的基線下進行分析。從實驗中,不論是在靜態的實驗或是動態的實驗中都會透過不同的時段及衛星組合來進行分析,其成果皆有達到一定的精度,也證實了本論文提出的方法及改良能夠適用於載具的即時姿態求解上。

The technique of Global Navigation Satellite System(GNSS) has been very mature and wide range of uses in commercial products, engineering, geodesy and remote sensing technology. This paper used the carrier phase measurement of the GPS satellites to solve the attitude of platform. Using nine-axis inertial sensors assisted Ambiguity Function Method(AFM) solves the phase ambiguity of carrier phase measurement in a short time by reducing the scope of its search into a surface. And get the high accuracy coordinate by double differencing the measurement. Then, solving the attitude through the model of attitude and the pooled least squares.

Experiment include two types of platform, static state and dynamic state. We test the precision by placing three single-frequency GPS receivers in two different baseline. Through experiment in different times and Geometric Dilution of Precision(GDOP), results prove that the attitudes from our method has reached to a certain level.
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 3
第二章 基礎理論 4
2.1 GPS系統架構 4
2.2 GPS衛星訊號 5
2.2.1 電碼與載波相位資料 5
2.2.2 廣播星曆與精密星曆 5
2.3 大氣效應 7
2.3.1 對流層影響 7
2.3.2 電離層影響 9
2.4 觀測方程式 11
2.4.1 虛擬距離觀測方程式 11
2.4.2 載波相位觀測方程式 13
2.5 差分模式 16
2.5.1 一次差分 16
2.5.2 二次差分 16
2.5.3 三次差分 17
2.5.4 二次差分模式中之參數處理 18
第三章 姿態解算 20
3.1 模稜函數法 20
3.1.1 基礎理論 20
3.1.2 改良式模稜函數法 21
3.1.3 曲面模稜函數法 22
3.2 平差模式 24
3.2.1 旋轉矩陣 25
3.2.2 平差模式 26
3.3 卡爾曼濾波 29
3.3.1 基礎理論 29
3.3.2 適應性卡爾曼濾波應用於姿態估測 31
第四章 實驗成果與分析 35
4.1 九軸慣性感測器 35
4.2 實驗成果 36
4.2.1 實驗設備說明 36
4.2.2 九軸慣性感測器及GPS求解角度誤差分析 37
4.2.3 靜態精度分析 39
4.2.4 動態載具實驗 47
4.2.5 動態載具實驗 (道路實驗) 50
4.3 實驗結論 53
第五章 結論與未來展望 54
參考文獻 55

吳究,「衛星定位電波相位量測與大氣效應之研究」,中國土木水利工程學刊,第四卷,第二期,第127-138頁 (1992)。

林修國,「模稜求定與時鐘偏差估計應用於衛星相對定位及姿態求解」,博士論文,國立中央大學大氣物理研究所,中壢 (1997)。

游豐吉、吳究,「載波相位餘弦模式於GPS衛星定位之求解」,中國土木水利工程學刊,第十一卷,第一期,第145-153頁 (1999)。

郭隆晨,「GPS衛星相對定位誤差之研究」,碩士論文,國立成功大學航空測量研究所,台南 (1991)。

王成尹,「以全球導航衛星系統實現剛體姿態量測」,碩士論文,國立中央大學遙測科技研究所,中壢 (2012)。

Brunner, F. K., and M. Gu, “ An Improved Model for the Dual Frequency Ionospheric Correction of GPS Observations,” Manuscripta Geodaetica, Vol. 16, pp. 205-214 (1991).

Black, H. D., ”An Easily Implemented Algorithm for the Tropospheric Range Correction,” Journal of Geophysical Research, Vol. 83, No. B4, pp. 1825-1828 (1978).

Finn, A. and J. Matthewman, “A Single Frequency Ionospheric Refraction Correction Algorithm for Transit and GPS,” Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mexico, pp. 737-756 (1989).

Gelb, A., J. F. Kasper, Jr., R. A. Nash, Jr., C. F. Price and A. A. Sutherland, Jr., Applied Optimal Estimation, London, England, pp. 1-155 (1974).

Han, S. and C. Rizos, “Improving the Computational Efficiency of the Ambiguity Function Algorithm,“ Journal of Geodesy, Vol. 70, pp. 330-341 (1996).

International Association of Geodesy Symposia, Vol. 107, Springer-Verlag, New York, pp. 299-308 (1991).

Hopfield, H. S., “Tropospheric Effect on Electromagnetically Measured Range: Prediction from surface Weather Data,” Radio Science, Vol. 6, No. 3, pp. 357-367 (1971).

Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System Theory and Practice, Springer-Verlag Wien, New York (1997).

Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2008. GNSS−Global Navigation Satellite Systems GPS, GLONASS, Galileo and More, Springer, New York( 2008)
.
Interface Control Document ICD-GPS-200, Rockwell International Corporation, Downey, California, pp. 9-86 (1991).

Janes, H. W., R, B. Langley, and S. P. Newby, “Analysis of Tropospheric Delay Prediction Models: Comparisons with Ray-Tracing and Implications for GPS Relative Positioning,” Bulletin Géodésique, Vol. 65, No. 3, pp. 151-161 (1991).

King, R. W., E. G. Master, C. Rizos, A. Stolz, and J. Collins, Surveying with Global Positioning System -GPS-, Ferd. D ü mmlers Verlag, Bonn, pp. 1-128 (1985).

Leick, A., GPS Satellite Surveying, John Wiley &; Sons, New York (1995).

Leick, A., GPS Satellite Surveying, 3rd edn., John Wiley &; Sons, Inc., Hoboken (2004).

Lu, G., Development of a GPS multi-antenna system for attitude determination, Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Calgary (1995).

Lenstra, A. K., Lenstra, H. W., and Lovász, L., Factoring polynomials with rational coefficients, Mathematische Annalen, Vol. 261, No. 4, pp. 515-534 (1982).
doi: 10.1007/bf01457454.

Lightsey, E. G. and Madsen J., Three-axis attitude determination using
global positioning system signal strength measurements, Journal of Guidance,
Control, and Dynamics, Vol. 26, No. 2, pp. 304−310 (2003).

Markley, F. L., Attitude determination using vector observations and the
singular value decomposition, The Journal of the Astronautical Sciences, Vol.
36, No. 3, pp. 245−258 (1988).

Markley, F. L., Attitude determination using vector observations: a fast
optimal matrix algorithm, The Journal of the Astronautical Sciences, Vol. 41,
No. 2, pp. 261−280 (1993).

Mader, G. L., “Rapid Static and Kinematic Global Positioning System Solutions Using the Ambiguity Function Technique,” Journal of Geophysical Research, Vol. 97, No. B3, pp. 3271-3283 (1992).

Remondi, B. W., “Using the Global Positioning System (GPS) Phase Observable for Relative Geodesy: Modeling, Processing, and Results,” Ph.D. Dissertation, University of Texas, Austin, Texas (1984).

Rahnemoon, M., “Ein neues Korrekturmodell für Mikrowellen-Entfernungsmessungen zu Satelliten,” Dr.-Ing. Dissertation, Institut für Navigation, Universität Stuttgart, Stuttgart (1987).

Spofford, P. R. and B. W. Remondi, “The National Gedodetic Survey Standard GPS Format SP3,“ http://igscb.jp1.nasa.gov/ (1998).

Spilker, J. J., Jr., “Tropospheric Effects on GPS ,” In: Parkinson, B. W., and J. J. Spilker Jr. (eds.) Global Positioning System: Theory and Application, Progress in Astronautics and Aeronautics, Vol. 164, American Institute of Aeronautics and Astronautics, Washington, D. C., pp. 519-538 (1996).

Seeber, G., Satellite Geodesy: Foundations, Methods, and Applications, Walter de Gruyter, Berlin, New York (1993).

Teunissen, P. J. G., The LAMBDA method for the GNSS compass, Artificial Satellites, Vol. 41, No. 3, pp. 89−103 (2006).

Teunissen, P. J. G., A general multivariate formulation of the multiantenna GNSS attitude determination problem. Artificial Satellites, Vol. 42, No. 2, pp. 97−111 (2007). doi:10.2478/v10018-08-0002-3.

Teunissen, P. J. G., Integer Least-Squares Theory for the GNSS Compass, Journal of Geodesy, Vol. 84, No. 7, pp.433−447 (2010).

Van Grass, F. and M. Braasch., “GPS Interferometric Attitude and Heading Determination: Initial Flight Test Results,” Navigation, Vol. 38, No. 4, pp. 297-316 (1991).

Wahba, G., A Least Squares estimate of spacecraft attitude, SIAM Review, Vol. 7, No. 3, pp. 409 (1965).

Wells, D., N. Beck, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M, Nakiboglu, K. P. Schwarz, J. M. Tranquilla and Vanicek, Guide to GPS Positioning, Canadian GPS Associates, Fredericton (1986).

Wu, J. and F.-G. Yiu, “Local Baseline Vectors Using the GPS with an Atmospherically Corrected Ambiguity Function Method,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 10, No. 1, pp. 1-8 (1998).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔