(3.230.173.249) 您好!臺灣時間:2021/04/18 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昭翰
論文名稱:Android 平台之聽力輔具開發與設計
論文名稱(外文):Development and Design of Generic Hearing Aids on Android Platform
指導教授:辛華昀辛華昀引用關係
指導教授(外文):Haw-Yun, Shin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:39
中文關鍵詞:智慧型手機藍牙耳機數位助聽器
外文關鍵詞:SmartphoneBluetooth headphoneDigital hearing aids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
台灣老年性聽障人口約有50 萬人,現行的助聽器由於外觀滿意度、效果認可度、聽障者心理障礙及高昂價格等因素使得配戴率過低;近年來智慧型手機幾乎已完全取代傳統手機,除計算功能強大外,更可以直接在智慧型手機上開發應用程式。本論文擬開發以市售之藍牙耳機搭配智慧型手機組合而成的藍牙耳機聽力輔具,並改造智慧型手機成為銀髮族的重要輔具,除了個人化的助聽設備外,系統也提供多元化功能,如手機故障或系統損毀時,個人化設定檔可由記憶卡中備份取出,恢復原有設定及功能,可省去重新驗配調校時間。
本論文將智慧型手機當作一個處理聲音訊號的平台,利用所開發的音訊處理模組,取代數位助聽器中的微處理器,同時利用藍牙耳機或手機內建的麥克風接收周遭的聲音傳到手機,手機再透過應用程式適當的將聲音訊號處理後傳到耳機輸出,讓聽障者可以清楚的聽到周遭的聲音。軟體部分則由Android 提供之SDK 進行軟體各模組開發,以取代助聽器中的各個區塊功能,其功能主要實現動態濾波器設定、增益補償設定,使其更容易符合聽障者在不同環境的需求;動態濾波器模組主要負責將音訊輸入並切割成多個頻帶,使音訊處理時可依照個人聽力較弱部分進行補償,聲音處理部分分成單聲道與雙聲道,使用者即可透過手機針對雙耳不同的聽力圖進行設定以模擬雙耳助聽器,但使用雙聲道由於API限制,僅可使用內建麥克風進行音訊擷取,此外系統內建聽力圖檢測來校正不同設備間的差異及Bode Plot預覽提供專業人員進行頻帶切割時使用,透過這些模組功能讓此系統能套用在各種設備。
本論文實作聽力輔具的軟、硬體架構,軟體實現基礎的頻帶切割及增益補償功能,額外增加多元化輔助軟體設計讓使用上更方便,在音訊處理延遲部分也在助聽器處理最大延遲容忍範圍內。未來將朝最佳化音訊處理效果,使輸入的背景音或噪音進行偵測消除,並進行各項音訊模組精準度校正及真人實際配戴測試,驗證其聽覺輔具功效,且助聽器配戴時建議雙耳配戴,透過此程式取代助聽器價格降低許多。

There are approximately 500,000 elders people with hearing impairment in Taiwan. Due to satisfaction with external appearance, approval of effectiveness, psychological obstacles of people with hearing impairment, and high prices, the rate of wearing existing hearing aids is still very low. In recent years, smartphones have almost completely replaced traditional mobile phones. Smartphones not only have powerful computation functions, but directly setup and develope applications. This study attempts to develop Bluetooth headphone hearing aids from Bluetooth headphones on the market matched with smartphones, and remake smartphones into important assistive tools for the elderly. More than a personalized hearing aid device, if the phone’s system is fault, it is possible to download personalized settings from the SD card to restore original functions and settings.
This study uses smartphones as a platform for processing sound signals. The developed sound processing module replaces the microprocessor in digital hearing aids, meanwhile, the microphone on the Bluetooth headphones or mobile phone can be used to receive sounds, transmit it to the mobile phone. The mobile phone uses applications to process the sound signals for output in the headphones, so that people with hearing impairment can clearly hear sounds in their surroundings. SDK provided by Android is used for software module development to replace the component functions in hearing aids. The major function of application setting has dynamic Filter Bank setting and gain setting to make it more suitable to the needs of people with hearing impairment. The sound processing part has one-channel and two-channel modes can be chosen. Users can use setting module to achieve personal optimal audiogram. Besides, the application bundle audiogram testing and bode plot preview. The audiogram testing provides the different equipment proofread and correct. And Bode plot can provide professional to adjust setting of the hearing aid modules like Filter Bank setting and the others. It can make different devices suitable to use the application.
This study implements hearing aid include software and hardware structure. Software implements dynamic Filter Bank and Gain setting. Besides, the application add many tools make users convenient to operate. The sound processing delay tolerated within maximum hearing aid delay. In the future, let sound processing to optimal result that hearing aid can implement like noise cancellation. Finally, hearing aid has to verification every module correction and provide to hearing impairment to wearing. However, hearing aid are suggested to wear by both ears and the price will be the more expensive than just using our application,

摘要 I
Abstract II
致謝 III
目次 IV
圖目次 V
表目次 VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 相關知識背景 4
2.1 人的聽覺 4
2.2 助聽器簡介 5
2.3 Filter Bank 設計 7
2.4 增益補償策略 11
2.5 文獻探討 12
第三章 研究方法 16
3.1 開發環境 16
3.2 系統架構 18
3.3 軟體架構 19
3.4 軟體模組功能簡介 20
3.5 軟體實做方法 22
第四章 實驗結果 28
4.1 Filter Bank驗證 28
4.2 助聽器軟體介面 30
4.3 效能分析 34
第五章 結論與未來展望 36
5.1 結論 36
5.2 未來展望 37
參考文獻 38

[1] 內政部統計處. (Aug 29). 101年第2週(100年底人口結構分析). Available: http://sowf.moi.gov.tw/stat/week/week10102.doc
[2] 內政部統計處. (Feb 11). 100年第35週(100年6月底領有身心障礙手冊者人數統計). Available: http://sowf.moi.gov.tw/stat/week/week10035.doc
[3] 張人仁, "PC-Based助聽復健平台設計開發," 碩士, 醫學工程研究所碩博士班, 國立成功大學, 台南市, 2005.
[4] 巨泉助聽器. (Feb 11). 聽力受損分級方式. Available: http://www.goldenday.com.tw/hearing_info.php?sn=3
[5] 科林助聽器. (21. April). 助聽器種類. Available: http://www.ear.com.tw/knowledge_type1.php
[6] 長庚醫院耳鼻喉科. (Feb 11). 助聽器的結構. Available: http://www.ear.com.tw/CGMH-WEB/HA-composition.htm
[7] A. M. Engebretson, "Benefits of digital hearing aids," IEEE Engineering in Medicine and Biology Magazine, vol. 13, pp. 238-248, 1994.
[8] R. Schafer, L. Rabiner, and O. Herrmann, "FIR digital filter banks for speech analysis," Bell System Technical Journal, vol. 54, 1975.
[9] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems: Prentice-Hall International, 1997.
[10] B. Sklar, Digital communications vol. 2: Prentice Hall NJ, 2001.
[11] 林柏言, "以 DSP 晶片建構助聽器補償策略之可行性與成效評估," 碩士, 醫學工程研究所, 國立陽明大學, 台北市, 2006.
[12] D. Tharini and J. P. Kumar, "21 Band 1/3-Octave Filter bank for digital hearing aids," in 2012 International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012, pp. 353-358.
[13] K. Yu-Ting, L. Tay-Jyi, L. Jueh-Tai, C. Wei-Han, L. Chih-Wei, and Y. Shuenn-Tsong, "Design of ANSI S1.11 Filter Bank for Digital Hearing Aids," in 14th IEEE International Conference on Electronics, Circuits and Systems, 2007. ICECS 2007. , 2007, pp. 242-245.
[14] K. Yu-Ting, L. Tay-Jyi, L. Yueh-Tai, and L. Chih-Wei, "Design and Implementation of Low-Power ANSI S1.11 Filter Bank for Digital Hearing Aids," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 1684-1696, 2010.
[15] L. Litwin, "FIR and IIR digital filters," IEEE Potentials, vol. 19, pp. 28-31, 2000.
[16] 余兆棠, 數位訊號處理: 滄海, 2010.
[17] T. B. Deng, "Three-channel variable filter-bank for digital hearing aids," IET Signal Processing, vol. 4, pp. 181-196, 2010.
[18] W. Ying and L. Yong, "A computationally efficient non-uniform digital FIR filter bank for hearing aid," in 2004 IEEE International Workshop on Biomedical Circuits and Systems, 2004, pp. S1/3/INV-S1/17-20.
[19] 何旻珊, "針對華語之助聽器補償策略平台建構," 碩士, 醫學工程研究所, 國立陽明大學, 台北市, 2004.
[20] T. H. Venema., The many faces of compression. Textbook of Hearing Aid Amplification, 2000.
[21] H. Dillon, Hearing aids, 2001.
[22] D. Byrne, H. Dillon, T. Ching, R. Katsch, and G. Keidser, "NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures," J Am Acad Audiol, vol. 12, pp. 37-51, Jan 2001.
[23] H. Dillon, "NAL-NL1: A new procedure for fitting non-linear hearing aids," The Hearing Journal, vol. 52, pp. 10-12, 1999.
[24] A. ANSI, "S3. 5-1997, Methods for the calculation of the speech intelligibility index," New York: American National Standards Institute, 1997.
[25] J. Hou, T. Houtgast, H. Levitt, H. Muesch, C. Chas Pavlovic, G. Studebaker, et al. (1997). SII SITE:Speech Intelligibility Index. Available: http://sii.to/index.html
[26] W. Ying and L. Yong, "A 16-band nonuniform FIR digital filterbank for hearing aid," in IEEE Biomedical Circuits and Systems Conference, 2006. BioCAS 2006., 2006, pp. 186-189.
[27] P. Young-cheol, K. Dong-Wook, K. Won-Ky, and I. P. Sang-i, "A digital hearing aid with 8-band curvilinear loudness fitting," in Proceedings of 1997 IEEE International Symposium on Consumer Electronics, 1997. ISCE '97., 1997, pp. 39-42.
[28] R. Vicen-Bueno, R. Gil-Pita, M. Utrilla-Manso, and L. Alvarez-Perez, "A hearing aid simulator to test adaptive signal processing algorithms," in IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007., 2007, pp. 1-6.
[29] T. Schneider, R. Brennan, P. Balsiger, and A. Heubi, "An ultra low-power programmable DSP system for hearing aids and other audio applications," in Proc. ICSPAT 1999, 1999.
[30] J. Katz, W. L. Gabbay, and D. S. Ungerleider, Handbook of clinical audiology: Williams &; Wilkins, 1978.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔