|
[1] P. Borka, A. K. Downinga, B. Kieffera, and I. D. Campbell, "Structure and distribution of modules in extracellular proteins.," Quarterly Reviews of Biophysics, vol. 29, pp. 119-167, 1996. [2] J. S. Chris P Ponting, Richard R Copley, Miguel A Andrade, Peer Bork, "Evolution of domain families," Contribution to "Analysis of amino acid sequences" in Advances in Protein Chemistry., vol. 54, pp. 185-244, 2000. [3] G. E. Folkers, B. N. M. v. Buuren, and R. Kaptein, "Expression screening, protein purification and NMR analysis of human protein domains for structural genomics.," Structural and Functional Genomics, vol. 5, pp. 119-131, 2004. [4] T. Hondoh, A. Kato, S. Yokoyama, and Y. Kuroda, "Computer-aided NMR assay for detecting natively folded structural domains.," Protein Science, vol. 15, pp. 871-883, 2006. [5] Å. K. Björklund, D. Ekman, and A. Elofsson, "Expansion of Protein Domain Repeats.," PLoS Computational Biology, vol. 2, p. e114, 2006. [6] E. G. Reynaud, M. A. Andrade, F. Bonneau, T. B. N. Ly, M. Knop, K. Scheffzek, and R. Pepperkok, "Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization.," BMC Biology, vol. 3, 2005. [7] X. Shan, R. L. D. Jr, S. A. Christopher, and W. D. Kruger, "Mutations in the regulatory domain of cystathionine beta synthase can functionally suppress patient-derived mutations in cis.," Human Molecular Genetics, vol. 10, pp. 635-643, 2001. [8] R. S. Gokhale and C. Khosla, "Role of linkers in communication between protein modules.," Current Opinion in Chemical Biology, vol. 4, pp. 22-27, 2000. [9] M. Ikebe, T. Kambara, W. F. Stafford, M. Sata, E. Katayama, and R. Ikebe, "A hinge at the central helix of the regulatory light chain of myosin is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity.," Journal Of Biological Chemistry, vol. 273, pp. 17702-17707, 1998. [10] H. C. v. Leeuwen, M. J. Strating, M. Rensen, W. d. Laat, and P. C. v. d. Vliet, "Linker length and composition influence the flexibility of Oct-1 DNA binding.," The EMBO Journal vol. 16, pp. 2043-2053, 1997. [11] C. R. Robinson and R. T. Sauer, "Optimizing the stability of single-chain proteins by linker length and composition mutagenesis.," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 5929-5934, 1998. [12] S. E. Radford, E. D. Laue, R. N. Perham, S. R. Martin, and E. Appella, "Conformational flexibility and folding of synthetic peptides representing an interdomain segment of polypeptide chain in the pyruvate dehydrogenase multienzyme complex of Escherichia coli.," Journal Of Biological Chemistry, vol. 264, pp. 767-775, 1989. [13] G. J. Russell GC, "Sequence similarities within the family of dihydrolipoamide acyltransferases and discovery of a previously unidentified fungal enzyme.," Biochim Biophys Acta. , pp. 225-232, 1991. [14] J. Gracy and P. Argos, "DOMO: a new database of aligned protein domains.," Trends in Biochemical Sciences, vol. 23, pp. 495-497, 1998. [15] L. I, G. L, D. NJ, D. T, S. J, M. R, C. F, C. RR, P. CP, and B. P., "Recent improvements to the SMART domain-based sequence annotation resource.," Nucleic Acids Research - NAR, vol. 30, pp. 242-244., 2002. [16] D. H. Haft, J. D. Selengut, and O. White, "The TIGRFAMs database of protein families.," Nucleic Acids Research - NAR, vol. 31, pp. 371-373., 2003. [17] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin, "The COG database: new developments in phylogenetic classification of proteins from complete genomes.," Nucleic Acids Research - NAR, vol. 29, pp. 22-28, 2001. [18] V. K, M. J, B. E, and P. S., "The SBASE protein domain library, release 9.0: an online resource for protein domain identification.," Nucleic Acids Research - NAR, vol. 30, pp. 273-275, 2002. [19] D. W. A. Buchan, S. C. G. Rison, J. E. Bray, D. Lee, F. Pearl, J. M. Thornton, and C. A. Orengo, "Gene3D: structural assignments for the biologist and bioinformaticist alike.," Nucleic Acids Research - NAR, vol. 31, pp. 469-473, 2003. [20] R. A. George and J. Heringa, "SnapDRAGON: a method to delineate protein structural domains from sequence data.," Journal of Molecular Biology vol. 316, pp. 839-851, 2002. [21] W. R.Taylor, "Protein structural domain identification.," Protein Engineering, vol. 12, pp. 203-216, 1999. [22] S. J. Wheelan, A. Marchler-Bauer, and S. H. Bryant, "Domain size distributions can predict domain boundaries.," Bioinformatics, vol. 16, pp. 613-618, 2000. [23] J. Eickholt, X. Deng, and J. Cheng, "DoBo: Protein domain boundary prediction by integrating evolutionary signals and machine learning.," BMC Bioinformatics, vol. 12, 2011. [24] J. Cheng, M. J. Sweredoski, and P. Baldi, "DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks.," Data Mining and Knowledge Discovery, vol. 13, pp. 1-10, 2006. [25] J. Sim, S.-Y. Kim, and J. Lee, "PPRODO: prediction of protein domain boundaries using neural networks.," Proteins Structure Function and Bioinformatics, vol. 59, pp. 627-632, 2005. [26] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi, "SCRATCH: a protein structure and structural feature prediction server. ," Nucleic Acids Research - NAR, vol. 33, pp. W72-76., 2005. [27] C.-C. Chang and C.-J. Lin, "LIBSVM : a library for support vector machines.," ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1--27:27, 2011. [28] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman, and R. D. Finn., "The Pfam protein families database.," Nucleic Acids Research - NAR, vol. 40, pp. D290-D301., 2012. [29] R. D. Finn, J. Clements, and S. R. Eddy, "HMMER web server: interactive sequence similarity searching.," Nucleic Acids Research - NAR, vol. 39, pp. W29–W37., 2011. [30] T. Ebina, H. Toh, and Y. Kuroda, "DROP: An SVM domain linker predictor trained with optimal features selected by random forest.," Bioinformatics, vol. 27, pp. 487-494, 2010. [31] S. Zou, Y. Huang, Y. Wang, C. Hu, Y. Liang, and C. Zhou, "A Novel Method for Prediction of Protein Domain Using Distance-Based Maximal Entropy," in Advances in Neural Networks – ISNN 2007. vol. 4492, D. Liu, S. Fei, Z. Hou, H. Zhang, and C. Sun, Eds., ed: Springer Berlin Heidelberg, 2007, pp. 1264-1272. [32] D. Sanchez and S. H. Courellis, "Protein Domain Boundary Prediction from Residue Sequence Alone Using Bayesian Neural Networks.," pp. 209-213, 2009. [33] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: A structural classification of proteins database for the investigation of sequences and structures.," Journal of Molecular Biology, vol. 247, pp. 536-540, 1995. [34] C. Orengo, A. Michie, S. Jones, D. Jones, M. Swindells, and J. Thornton, "CATH -- a hierarchic classification of protein domain structures," Structure, vol. 5, pp. 1093-1108, 1997. [35] H. Berman, K. Henrick, and H. Nakamura, "Announcing the worldwide Protein Data Bank.," Nature Structural &; Molecular Biology, vol. 10, p. 980, 2003. [36] B. Nirjhar, C. N., M. Daliah, B. N., and S. K., "An algorithm to find all identical internal sequence repeats.," Current Science, vol. 95, pp. 188-195, 2008. [37] S. Mika and Burkhard Rost, "UniqueProt: Creating representative protein sequence sets.," Nucleic Acids Research - NAR, vol. 31, pp. 3789-3791, 2003. [38] CASP9., "[http://www.predictioncenter.org/casp9/index.cgi].".
|