跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳鎮宇
研究生(外文):Chen-Yu Wu
論文名稱:自我還原 (Ca,Sr)S:Eu2+與微波均質Y2O3:Eu3+製備藍光激發之奈米級紅光螢光粉研究
論文名稱(外文):Investigations on self-reduced (Ca, Sr)S: Eu2 + and microwave homogenized Y2O3: Eu3 + nano-phosphors with red luminescence by broad-band blue-light excitation
指導教授:張宏宜
指導教授(外文):Horng-Yi Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:123
中文關鍵詞:自我還原,Y2O3: Eu3+,(CaSr)S:Eu2+,藍光激發,紅色螢光體
外文關鍵詞:self-reductionY2O3: Eu3+(CaSr)S:Eu2+blue-light excitationred phosphors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
使用藍光激發等向性佳的紅光奈米螢光粉,可提高白光LED或顯示器之色彩飽和度與發光強度。本研究利用濕式化學製程製作螢光粉,掌控其維度之等向性與尺度。在Y2O3:7mol% Eu3+製備中,利用尿素水解製作出分子形貌等向性佳的前驅物(YCO)球型粒子,並利用成核成長的過程掌控尿素水解法的前驅物粒徑成長的大小。傳統尿素水解反應時間太長,本研究加入低瓦數的微波100W-3.5min進行尿素溶劑/水解製程,以低界面能乙二醇為溶劑,製作出奈米級(25nm)之Y2O3: 7mol% Eu3+前驅物。利用微波溶劑解製作出的奈米級前驅物經過800℃熱處理後,其形貌仍維持奈米級,經466nm激發,所得紅光611nm強度已不亞於商業級粉末。
尿素水解陽離子的前驅物含有大量羰基,所以可以維持等向性佳的球型,其代價為熱處理溫度高達700~800℃方可將其羰基轉變成二氧化碳,此過程除了耗能且會增加粉末間頸縮成長的問題。本研究進一步利用KOH強鹼加入微波尿素溶劑解製程中(pH=9.5),減少羰基反應,並且維持等向性佳的球形粒子,此種前驅物經過600℃熱處理後仍維持奈米尺度,並且具有466nm激發的良好紅光強度。
Eu3+藍光激發只限定於466nm,在許多藍光背光源是無法有效的運用。因此,本研究開發寬藍光激發範圍(380~550nm)均可激發的(Ca,Sr)S:Eu2+紅光(600~700nm)螢光粉。利用高溫迴流法異質成核前驅物在奈米碳球上(核殼法),將其置於氮氣氛中,800℃熱處理,藉碳球燃燒產生一氧化碳,消除前驅物殘存的氧,同時還原Eu3+成為Eu2+,是一種自發性還原反應。此種還原過程具有一氧化碳保護氣氛,除了可以不需加入氫氣,也不需加入硫等有毒氣體做為補償氣氛,即可完成主體晶格成相與發光中心的價數調整。此種熱處理製程後之CaS:Eu2+螢光體仍維持40nm的尺度,其PL發光強度比起傳統固態法合成之大晶粒螢光體來的強。
本研究成功利用異質與均質成核的濕式化學製程控制藍光激發之紅光螢光粉尺度與等向性,進一步開發環保、簡化與低溫的自我還原製程,提升藍光激發的紅色螢光體發光強度。

The color saturation and luminous intensity of white light LEDs or displays can be improved by use of isotropic red nano-phosphors which are excited by blue-light. This thesis uses wet chemical method to prepare and control phosphors’ particle size and isotropic dimension. The Y2O3 : 7mol% Eu3+ phosphors were prepared by urea hydrolysis to form isotropic molecular precursor (YCO) which grew into spherical particles. The particles growth mechanism in different solvents such as ethylene glycol or water was a zero-order chemical reaction. The growth of precursor particle size could be controlled by the zero-order chemical reaction process. Generally, the traditional urea hydrolysis reaction proceeds for a long time. When the low power microwave energy was utilized to drive the urea hydrolysis or solvolysis (100W-3.5 min) in a low surface energy solvent of ethylene glycol, the Y2O3 : 7mol% Eu3+ precursors were formed with nano-particle size of 25 nm. Such microwave-prepared precursors continued to maintain nano-particle size after 800C calcination and emitted 611 nm red-light under the 466 nm excitation.
The urea-hydrolyzed precursors contained a lot of carbonyl groups (C=O) to maintain the isotropically spherical particles. It needed high calcined temperatures of 700-800C to remove the carbonyl groups. Energy consumption and particles necking occurred during the heat treatment. A strong base of KOH was added into microwave-driven urea solvolysis (pH=9.5) to reduce the amount of carbonyl groups in reaction and maintained the isotropically spherical particles. This process only required post-heat treatment at 600C as to maintaining the isoptropic and nano-size of particles. The red-light was well emitted by 466 nm excitation.
The red-light emission of Eu3+ was restricted under the excitation of narrow band of 466 nm. It is expected that the luminescence can be generated from the broad-band back-light. This work also investigates the (Ca,Sr)S : Eu2+ with the 600~700 nm red-light emission under the excitation of broad-band blue-light of 380~550 nm. A novel core-shell technique was developed to heterogeneously nucleated CaS : Eu2+ and (Ca,Sr)S : Eu2+ precursors on pseudo-nano-carbon balls surface by reflux process. The CaS : Eu2+ and (Ca,Sr)S : Eu2+ nano-phosphors were then formed by self-reduction of Eu3+ to Eu2+ in a nitrogen atmosphere at 800C and then emit strong 600~700 nm red-light by 380~550 nm irradiation. The carbon balls core self-oxidized the residual oxygen to produce a reduction atmosphere without extra additions of hydrogen and poisonous sulfur to compensate sulfur atmosphere for the (Ca,Sr)S phosphors. Such core-shell template technique may accomplish host phases crystallization and valence adjustment of activators in one process simultaneously. The CaS : Eu2+ nano-phosphors of 40 nm were achieved with the self-reduction technique. Such photoluminescent intensity (PL) is higher than the large grained phosphors from conventional mixed oxide preparation.
This thesis utilized homogeneous and heterogeneous nucleation processes to prepare and control the isotopic and nano-sized characteristics of blue-light excited red phosphors. Furthermore, the PL enhancement under blue-light excitation is completed by developing environmental friendliness, simple and low temperature self-reduction process.


中文摘要................................................................................................................I
英文摘要...............................................................................................................II
圖目錄 .V
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 3
2-1奈米製程回顧 5
2-2成核熱力學理論 7
2-3無機螢光粉組成與分類 17
2-4光譜介紹 28
2-5 Eu3+/Eu2+光譜計算 35
2-6螢光粉Y2O3:Eu3+,(Ca,Sr)S:Eu2+材料介紹 42
2-7研究動機與目的 53
第三章 實驗步驟與規劃 55
3.1實驗方法與步驟 55
3.2分析儀器 66
第四章 結果與討論 69
4.1尿素水解法Y2O3:Eu3+ 1、3、5、7、9、11% 69
4.2 Y2O3:Eu3+ 7%尿素水解法成長過程 77
4.3微波尿素水解法 81
4.4微波尿素溶劑解 83
4.5尿素鹼性微波溶劑解法 87
4.6 CaS:Eu2+固態法 95
4.7 CaS:Eu2+沉澱法 97
4.8 CaS:Eu2+碳球沉澱法 98
4.9 非水溶劑合成CaS:Eu2+ 前驅物 (選擇小rc) 100
4.10 CaS:Eu2+碳球溶劑迴流法製作核殼螢光體 ..........................................101
第五章 結論 118

圖目錄
圖2-1白光LED示意圖。 3
圖2-2. (a)環氧樹脂混奈米粉末,(b)環氧樹脂混非奈米級粉末,(c)奈米級YAG,(d)非奈米級YAG。 4
圖2-3. 自由能與成核半徑函數圖。 7
圖2-4. 三相界面的接觸角示意圖與接觸角界面能公式。 8
圖2-5. 平行板異質成核圖示(含α、β、δ三項與接觸角θ)。 10
圖2-6. 自由能與平板異質成核半徑函數圖。 11
圖2-7. 球形異質成核圖示。 11
圖2-8. 核殼半徑比x與f(m,x),(m:cosθ),之函數圖。 12
圖2-9. 界面活性劑簡易示意圖。 13
圖2-10. 球型微胞示意圖。 13
圖2-11. Pc與各種臨界微胞形貌示意圖。 14
圖2-12. 各種微胞形貌異質成核(紅色為異質成核區)示意圖。 14
圖2-13. 界面活性劑/油/水各情況互溶示意圖。 15
圖2-14. 界面活性劑/油/水各情況互溶與R(40)關係圖 16
圖2-15. Pc與各種微乳形貌示意圖。 16
圖2-16. 界面活性劑/油/水熱力學穩定形貌三相圖。 17
圖2-17. 配合Winsor所分類之界面活性劑/油/水三相圖。 17
圖2-18. 原子軌域、分子軌域與能帶軌域示意圖。 18
圖2-19. 絕緣體、半導體與導体能帶示意圖。 19
圖2-20. 直/間接能隙能量與動能圖(虛線為各點波向量)。 19
圖2-21. (a)直接,(b)間接能隙發光圖。 20
圖2-22. 摻雜之激發後電子電洞跳躍分類示意圖。 21
圖2-23. 激活劑激發與發光呼吸模型圖。 22
圖2-24. 稀土自由離子光譜圖。 23
圖2-25. 各螢光材料能隙分佈圖。 24
圖2-26. (a)自由離子能階,(b)主晶格中電負度造成紅移量,(c)晶格場分裂造成紅移量。 24
圖2-27. d軌域進入正八面體晶格場中分裂示意圖。 26
圖2-28. d軌域進入各種晶格場中分裂示意圖。 27
圖2-29. VO43-分子能階示意圖。 27
圖2-30. 波恩-奧本海默H2分子能階圖示。 28
圖2-31. 波恩-奧本海默簡化成Coordinate-Diagram。 29
圖2-32. 激態與激發態之振動能階波函數疊加面積幾何示意圖。 30
圖2-33. d≦1與d>1激發與發光光譜幾何圖示與△S幾何圖示。 31
圖2-34. 內部能量轉換之Coordinate Diagram。 32
圖2-35. 激活劑A與激活劑S之間的能量傳遞與共振消散過程。 33
圖2-36. Dexter濃度淬滅曲線。 34
圖2-37. 低溫與高溫之激活劑Coordinate Diagram。 34
圖2-38. 三價稀土元素自由離子f-f光譜。 35
圖2-39. Eu3+之f軌域能階分裂與解析過程圖。 35
圖2-40. Eu3+激發與發光光譜統整。 36
圖2-41. 自由稀土二價離子能階示意圖與Eu2+能階表。 37
圖2-42. Eu2+之d軌域受主體晶場影響圖。 38
圖2-43. P. Dorenbos整理Eu2+在主體晶格之計算方式。 38
圖2-44. Eu2+之d軌域(4.3eV)紅移量。 41
圖2-45. 各稀土氧化物相圖。 42
圖2-46. 各種三價稀土離子半徑。 43
圖2-47. 氧化釔Cubic結晶結構圖。 43
圖2-48. 氧化釔對稱空間群示意圖。 44
圖2-49. (a)沉澱法Y(OH)3前驅物、(b)沉澱法經600℃熱處理後之TEM 44
圖2-50. (a)逆微乳法前驅物SEM,(b)逆微乳法前驅物800℃ TEM 45
圖2-51. 尿素水解法前驅物Y(OH)CO3.xH2O之FTIR 45
圖2-52. 尿素水解法前驅物Y(OH)CO3.xH2O 反應過程之離心取出液體[Y3+]之
圖2-53. 尿素水解法前驅物Y(OH)CO3.xH2O之TGA與DTA分析圖[4] 46
圖2-54. a: 尿素水解法前驅物Y(OH)CO3.xH2O,b: 尿素水解法前驅物Y(OH)CO3.xH2O 800℃,c: 尿素水解法前驅物Y(OH)CO3.xH2O 1000℃之SEM 46
圖2-55. a:尿素水解法前驅物Y(OH)CO3.xH2O 800℃,b: 異丙醇改質尿素水解法前驅物Y(OH)CO3.xH2O 800℃ 47
圖2-56. a:乙醇溶熱之Y(OH)3 -800℃、b:水熱之Y(OH)3 -800℃、c:乙二醇溶熱之Y(OH)3 -800℃、d:丙三醇溶熱之Y(OH)3 -800℃之TEM 47
圖2-57. 聚乙二醇2000(Y2O3)溶膠凝膠法前驅物、聚乙二醇1000(Y2O3)溶膠凝膠法前驅物、聚乙二醇200(Y2O3)溶膠凝膠法前驅物 48
圖2-58. 奈米Y2O3:Eu3+激發光的藍移PL示意圖。 48
圖2-59. 鹼金屬離子半徑影響其硫化物摻雜之Eu2+激發與發光示意圖。 49
圖2-60. 固態法CaSO4/石墨為4時高溫還原為CaS圖 50
圖2-61. CaS:Eu2+固態法SEM 50
圖2-62. 溶熱法CaS:Eu2+ SEM 51
圖2-63. 沉澱法(埋於活性碳還原法)CaS:Eu2+ TEM與XRD(紅框部分為CaSO4相,還原溫度越高其強度越強) 52
圖2-64. 有機單一來源法之單一來源結構式與其CaS之TEM 52
圖2-65. 改變界面張力能後降低臨界半徑示意圖 53
圖2-66. CaS:Eu2+/碳球,由內而外還原機制圖,(a)碳球:作為板模之載體。(b)將鹼土硫化物摻雜銪之前驅物利用液態化學異質成核成長在碳球上。(c)利用碳球在墮性氣體下燃燒時與微量氧生成一氧化碳過程還原銪離子。(d)鹼土族硫化物摻雜Eu2+螢光粉。 54
圖3-1. 80℃尿素水解過程 55
圖3-2. 尿素微波水解方式。 56
圖3-3. (a) 0.78M葡萄糖溶液,(b) 0.78M葡萄糖溶液經過180℃-6hr,(c) 0.78M葡萄糖溶液經過180℃-12hr。 60
圖3-4. 水熱12與8hr碳球SEM 61
圖3-5. 油浴迴流設備示意圖 62
圖3-6. 碳球分散於溶液中示意圖 63
圖3-7. PL原理示意圖 66
圖3-8. 發光光譜量測示意圖 67
圖3-9. 激發光譜量測示意圖 67
圖3-10. FTIR量測示意圖 68
圖4-1. 80℃尿素水解2hr再800℃-2hr,不同Y2O3:Eu3+ x%之SEM影像,a:x=1、b:x=3、c:x=5、d:x=7、e:x=9、f:x=11。 70
圖4-2. 80℃尿素水解2hr再800℃-2hr,不同Y2O3:Eu3+ x%之TEM影像與粒徑,a:x=1(85nm)、b:x=5(90nm)、c:x=7(100nm)。 71
圖4-3. 80℃尿素水解2hr再1000℃-2hr不同Y2O3:Eu3+ x%之SEM影像,a:x=1、b:x=5、c:x=7。 72
圖4-4. 80℃尿素水解4hr再800℃-2hr不同Y2O3:Eu3+ x%之SEM,a:x=1、b:x=3、c:x=5、d:x=7、e:x=9、f:x=11。 73
圖4-5. 80℃尿素水解2hr再800℃-2hr,不同Y2O3:Eu3+ x%之XRD,a:x=1、b:x=3、c:x=5、d:x=7、e:x=9、f:x=11。水解4hr再800℃-2hr,不同Y2O3:Eu3+ x%之XRD,g:x=1、h:x=3、i:x=5、j:x=7、k:x=9、l:x=11。 74
圖4-6. 80℃尿素水解2hr再1000℃-2hr不同Y2O3:Eu3+ x%XRD,a:x=1、b:x=5、c:x=7。 75
圖4-7. 80℃尿素水解2,4hr,進一步800℃-2hr,不同Y2O3:Eu3+ x%,466nm激發,611nm發光強度,a:水解2hr再800℃-2hr(Eu%:黑線1%,紅線3%,橙線5%,黃線7%,綠線9%,藍線11%)、b: 水解4hr-再800℃-2hr(Eu%:黑線1%,紅線3%,橙線5%,黃線7%,綠線9%,藍線11%)、c: 水解2hr-再1000℃-2hr(Eu%:黑線1%,紅線5%,橙線7%)。 75
圖4-8. 80℃尿素水解2,4hr再800℃-2hr,不同Y2O3:Eu3+ x% (X軸),466nm激發,611nm發光強度(左Y軸)與XRD(222)FWHM代表結晶度(右Y軸)作圖,(a)水解2hr再800℃-2hr,(b)水解4hr-800℃-2hr,(c)水解2hr-1000℃-2hr。 76
圖4-10. 0.188M[Y3+]與1.3M尿素80℃水解0.5,1,2hr SEM示意圖,a:水解0.5hr(75nm)、b:水解1hr(100nm)、c:水解2hr(120nm)、d: 水解4hr,不規則團聚(單顆約190nm)。 78
圖4-11. 0.188M[Y3+]與1.3M尿素80℃水解2,3,4,5,6hr 經過熱處理800℃-2hr SEM示意圖,a:水解2hr(100nm)、b:水解3hr(150nm)、c:水解4hr(175nm)、d:水解5hr(175nnm)、e:水解6hr(175~1065nm)。 79
圖4-12. (a)尿素水解法Y2O3:Eu3+ 7mol%不同水解時間與粒徑成長關係圖。(b)黑色線:尿素水解法Y2O3:Eu3+ 7mol%不同水解時間與粒徑成長關係圖,紅色線: 尿素水解法Y2O3:Eu3+ 7mol%不同水解時間經過800℃-2hr與粒徑成長關係圖。 80
圖4-13. 不同尿素水解時間,經800C-2hr熱處理之Y2O3:Eu3+-7mol% 以466nm激發之PL圖,黑色線:水解2hr,橙色線:水解3hr,藍色線:水解4hr,綠色線:水解5hr,紅色線:水解6hr。 80
圖4-14. 經800C-2hr熱處理之Y2O3:Eu3+-7mol%,466nm激發之611nm發光強度與水解時間關係圖。 81
圖4-15. 0.188M[Y3+]與1.3M尿素溶液微波水解所得前驅物粉體之SEM圖, a:1000瓦微波20sec、b: 1000瓦微波25sec、c: 1000瓦微波30sec。 82
圖4-16. 0.188M[Y3+]與1.3M尿素溶液微波水解TEM圖,a:100瓦微波3.5min、b: 100瓦微波3.5min-800℃-2hr。 82
圖4-17. 微波尿素水解Y2O3:Eu3+-7mol%之611 nm發光圖譜(466 nm激發)。紅色線:微波1000W-30sec再800℃-2hr,黑色線: 微波100W-3.5min再800℃-2hr。 83
圖4-18. 0.188M[Y3+]與1.3M尿素乙二醇溶液經100瓦微波尿素溶劑解3.5min,(a)前驅物,(b) 熱處理800℃-2hr;1000瓦微波溶劑解30sec,(c) 前驅物,(d)熱處理800℃-2hr,以及(e)商業粉末之SEM圖。 84
圖4-19. 各種尿素水解前驅物FTIR,黑線:尿素水解80℃-4hr、藍線:微波尿素溶劑解100W-3.5min、紅線: 微波尿素水解1000W-30sec。 85
圖4-20. 微波溶劑解以466nm激發之PL圖,紅色線:微波1000W-30sec再800℃-2hr;黑色線: 微波100W-3.5min再800℃-2hr。 85
圖4-21. 800℃-2hr 熱處理後,經466nm激發之各 86
圖4-22. 各種尿素水解前驅物800℃-2hr 熱處理之XRD,黑線:尿素水解80℃-4hr、橘線:微波尿素溶劑解100W-3.5min、紅線: 微波尿素水解1000W-30sec。圖中右表為此三者XRD之(222)半高寬。 86
圖4-23. 各種製程製備 87
圖4-24, 尿素鹼性微波溶劑解法100W-3.5min前驅物之SEM,(a)(b)一般尿素溶劑解(起始pH=3.5),(c)(d) 加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解,(e)(f) 加入1M KOH/水至pH=9.5微波溶劑解。 88
圖4-25. 尿素鹼性微波溶劑解法100W 3.5min再經600℃-2hr之SEM,(a)(b)一般尿素溶劑解(起始pH=3.5),(c)(d) 加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解,(e)(f) 加入1M KOH/水至pH=9.5微波溶劑解。 89
圖4-26. 尿素鹼性微波溶劑解法100W 3.5min再經800℃-2hr之SEM,(a)(b) 一般尿素溶劑解(起始pH=3.5),(c)(d) 加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解,(e)(f) 加入1M NaOH/水至pH=9.5微波溶劑解。 90
圖4-27. 尿素鹼性微波溶劑解法高瓦數(300W, 500W)前驅物之SEM,(a)(b) 加入1M KOH/EG(乙二醇)至pH=9.5 300W 1min 15sec微波溶劑解,(c)(d) 加入1M NaOH/(乙二醇)至pH=9.5 500W 1min微波溶劑解。 91
圖4-28. 尿素鹼性微波溶劑解法,高瓦數(300W, 500W)前驅物再經600℃-2hr之SEM,(a)(b) 加入1M KOH/EG(乙二醇)至pH=9.5 300W 1min 15sec微波溶劑解,(c)(d) 加入1M KOH/EG(乙二醇)至pH=9.5 500W 1min微波溶劑解。 92
圖4-29. 尿素鹼性微波溶劑解法100W 3.5min再800℃-2hr之TEM,(a) 一般尿素溶劑解(起始pH=3.5)前驅物,(b) (a)經800℃-2hr,(c) 加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解,(d) (c)經800℃-2hr,(e) 加入1M NaOH/水至pH=9.5微波溶劑解,(f):(e)經800℃-2hr。 93
圖4-30. 尿素鹼性微波溶劑解法100W-3.5min前驅物經600℃-2hr ,466nm激發之PL,黑色線:一般尿素溶劑解(起始pH=3.5)、綠色線:加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解、藍色線加入1M KOH/水至pH=9.5微波溶劑解。 94
圖4-31. 466nm激發之PL圖譜,綠色線來自 94
圖4-32. 尿素鹼性微波溶劑解法100W-3.5min前驅物經600℃-2hr之XRD,黑色線:一般尿素溶劑解(起始pH=3.5)、綠色線:加入1M KOH/EG(乙二醇)至pH=9.5微波溶劑解。圖中右表為兩項製程所得之Y2O3螢光粉(222)繞射峰之半高寬,用來代表結晶性。 95
圖4-33. 固態法合成CaS:Eu2+ 0.5mol%,置於活性碳氣氛包圍下,於不同溫度熱處理後,以藍光444nm激發之PL圖,綠色線:800℃,紅色線:1000℃,紫色線:600℃。 96
圖4-34. 固態法合成不同摻雜濃度之CaS:Eu2+ 0.5,2,3,4mol%,置於活性碳下800℃熱處理,藍光444nm激發之PL圖,綠色線:0.5mol%,橘色線:2mol%℃,紫色線:4mol%,紅色線:3mol%。 96
圖4-35. 固態法合成CaS:Eu2+ 0.5mol%,置於活性碳下800℃熱處理之SEM。 97
圖4-36. CaS:Eu2+沉澱法所得之SEM,(a) 前驅物,(b) 活性碳熱處理800℃-2hr。 98
圖4-37. CaS:Eu2+- 3mol%沉澱法,活性碳熱處理800℃-2hr所得粉體之PL, 經444nm excitation之發射光譜。 98
圖4-38. CaS:Eu2+ 3mol%碳球沉澱法之(a)(b)前驅物,經(c)(d)空氣;(e)(f)氮氣,熱處理800℃-2hr之SEM。 99
圖4-39. CaS:Eu2+ -3mol%碳球沉澱法前驅物在空氣下與氮氣下熱處理800℃-2hr之PL,(a)以444nm excitation之發射光譜,(b)紅光發射光譜對應之PL excitation光譜。 100
圖4-40. 硝酸鈣(0.097 M)/Eu(NO3)3.6H2O(0.003M)/1M硫脲(Thiourea)約100℃溶於(a)(b)乙二醇,(c)(d) 二乙二醇,(e)(f)丙三醇中,經過180℃-9hr迴流產生之前驅物SEM。 101
圖4-41. 硝酸鈣(0.097 M)/Eu(NO3)36H2O(0.003M)/1M硫脲(Thiourea)於丙三醇中,(a)碳球自我還原, 180℃-9hr迴流,N2下熱處理800℃-4hr所得螢光粉;與(b) 不加碳球於180℃-9hr迴流合成,經過N2, 800℃-4hr所得螢光粉在白光照射下之照片。 102
圖4-42. 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲:0.1M/0.03g碳球於180℃-9hr 迴流之(a)(b)前驅物,進一步(c)(d)N2下熱處理700℃-4hr,(e)(f)N2下熱處理800℃-4hr之SEM影像。 103
圖4-43. 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲:1M/0.03g碳球迴流反應, (a)(b) 160℃-9hr ,(c)(d)180℃-9hr迴流前驅物;與(e)(f) 180℃-9hr迴流後,N2下熱處理800℃-4hr。 104
圖4-44. 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003/硫脲:1M /0.03g碳球於180℃-3hr迴流之(a)(b)前驅物與(c)(d) 前驅物於N2下熱處理800℃-4hr之SEM。 105
圖4-45. 醋酸鈣:0.02425M/Eu(NO3)36H2O:0.0075M/硫脲:0.25M/0.03g碳球於180℃-9hr迴流之前驅物(a)(b)(c)(d)SEM與(e)(f)TEM影像。 106
圖4-46. 醋酸鈣:0.02425M/Eu(NO3)36H2O:0.0075M/硫脲:0.25CM/0.03g碳球於180℃-9hr迴流之前驅物,N2下熱處理(a)(b)800℃-4hr之SEM。 107
圖4-47. Ca1為0.025M且計量比Ca1:TA為10時,所得粉體放大核與殼之間夾角為60~70o之間,R/rc約為8,套入圖2-28圖式,可得f(m,x)=0.36~0.4。 107
圖4-48. 當Ca1=0.025M +TA+0.03g碳球於180℃-9hr迴流所得之前驅物,(a)TA=0.0025M,(b) TA=0.025M,(c) TA=0.25M,(d) TA=0.5M,與(e) 純碳球等之TEM影像。 108
圖4-49: 當Ca1=0.025M +TA+0.03g碳球於180℃-9hr迴流所得之前驅物,在N2氣氛,800℃-4hr 熱處理,(a,b) TA=0.0025M,(c,d) TA=0.025M,(e,f) TA=0.25M,(g,h) TA=0.5M,等之TEM影像;(i)醋酸鍶0.02425M/Eu(NO3)36H2O:0.0075M/硫脲0.25M/0.03g碳球-180℃-9hr-N2-800℃-4hr(40nm),(j)醋酸鍶0.012125M/醋酸鈣0.012125M /Eu(NO3)36H2O:0.0075M/硫脲0.25M/0.03g碳球-180℃-9hr-N2-800℃-4hr(50nm)。 110
圖4-50. Ca1=0.025M +TA+0.03g碳球,不同TA含量於180℃-9hr迴流、沉澱法、碳球沉澱法與固態法之XRD分析,(a,b) Ca1:TA=1:0.1,(b) Ca1:TA=1:1,(c) Ca1:TA=1:10,(d) Ca1:TA=1:20,(e)碳球沉澱法,(f) 沉澱法,(g) 固態法。以及(h) 核殼碳球迴流法180℃-9hr (Ca1:TA=1:0.1、1:1、1:10、1:20)之(200)結晶度與450nm激發紅光650nm關係圖。 111
圖4-51. Ca1=0.025M +TA+0.03g碳球,不同TA含量於180℃-9hr迴流 (Ca1:TA=1:0.1、1:1、1:10、1:20)之450nm激發圖,黑色線:1:0.1,紅色線:1:1,橙色線:1:10,藍色線:1:20。 112
圖4-52. Ca1=0.025M +TA+0.03g碳球,Ca1:TA=1:10,添加Sr之(Sr, Ca)S:Eu2+, 180℃-9hr迴流,800℃-4hr熱處理所得螢光粉,(a) 藍光激發光譜與(b) 450nm激發光譜之發光PL。紅線: CaS,粉紅色: Ca0.5Sr0.5S,黃色: SrS。 113
圖4-53. Ca1=0.025M +TA+0.03g碳球,Ca1:TA=1:10,180℃-9hr迴流,800℃-4hr熱處理所得螢光粉在白光照射下之顏色,(a) CaS:Eu2+,(b) Ca0.5Sr0.5S,(c) SrS:Eu2+。 113
圖4-54: Ca1=0.025M +TA+0.03g碳球,不同TA於180℃-9hr迴流所得之前驅物,以及經N2氣氛,800℃-4hr熱處理後之照片,(a)TA=0.0025M,(b) TA=0.025M,(c) TA=0.25M,(d) TA=0.5M等。 114
圖4-55. 碳球還原法之前驅物FTIR,(a) 醋酸鈣0.02425M/Eu(NO3)36H2O:0.0075M/硫脲0.25M/0.03g碳球-180℃-9hr之前驅物,(b) 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲1M /0.03g碳球-180℃-3hr之前驅物,(c) 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲1M/0.03g碳球-180℃-9hr回流,(d) 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲0.1M/0.03g碳球-180℃-9hr 迴流之前驅物,(e)純碳球。 115
圖4-56. (a) 純碳球,(b) 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003/硫脲:1M /0.03g碳球於180℃-3hr迴流之前驅物,(c) 醋酸鈣:0.097 M/Eu(NO3)36H2O:0.003M/硫脲:0.1M/0.03g碳球於180℃-9hr 迴流之前驅物。紅線為TGA、藍線為DTA、橙色線為DTG。 116
圖4-57.碳球核殼成長螢光體粉體與自還原機制圖。A:碳球(咖啡色球為碳球示意圖),B:Ca1:TA=0.025M:0.25M液態中迴流異質成核與同質成核模型(藍色為前驅物示意圖),C:經過氮氣下還原熱處理後呈現單一分散粒子示意圖,D: 經過氮氣下還原熱處理後呈現團聚粒子示意圖。..................................................... ...........117
表目錄
表2-1. 常見液態與固態的分散能γD與極性能γP。 9
表2-2. 常見液態之分散能γD與極性能γP(在劃分成酸γ+與鹼γ-)。 9
表2-3. 稀土電子組態表。 22
表2-4. 電子雲膨脹編號 39
表2-5. 化合物發光波長……………………………………………………….…....39
表3-1. 尿素水解法實驗流程…………………………………………………….....55
表3-2. 尿素微波水解法實實驗流程…………………………………………….....56
表3-3. 尿素微波溶劑解法實驗流程…………………………………………….....57
表3-4. 尿素鹼性微波溶劑解法實驗流程…………………………………….........58
表3-5. CaS:Eu2+沉澱法實驗流程………………………………….………….......59
表3-6. 碳球實驗流程……………………….……………………….………….......60
表3-7. CaS:Eu2+碳球沉澱法實驗流程…………………………………….……...61
表3-8. 非水溶劑合成CaS:Eu2+前驅物實驗流程………………………………......62
表3-9. CaS:Eu2+碳球溶劑回流法實驗流程………………………………...…….63
表3-10. 實驗總參數...................................................................................................64
表 4-1. 單元硫化物之Ksp,隨著陽離子半徑增加而增加。……………………...97表4-2. Ca1=0.025M +TA+0.03g碳球,不同TA含量於180℃-9hr迴流所得之EDS分析。………………………………………………………………………………..111



[1] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, "Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties," Materials Science and Engineering: R: Reports, 71, (2010)1-34.
[2] I. W. Lenggoro, Y. Itoh, K. Okuyama, and T. O. Kim, "Nanoparticles of a doped oxide phosphor prepared by direct-spray pyrolysis," Journal of Materials Research, 19, (2011) 3534-3539.
[3] Y. D. Jiang , Z. L. Wang, F. Zhang, H. G. Paris and C. J. Summers “Synthesis and characterization of Y2O3 :Eu3+ powder phosphor by a hydrolysis technique” , Journal of Materials Research, 13, (1998) 2950-2955.
[4] Y. Chung, S. Park, K. Jang, I. Kim and S. Kim, Y. I. Lee and H. Seo,“Optical Properties and Crystal Structure of Eu3+-Doped Y2O3 Crystals Prepared under Diferent Conditions and with Diferent Methods”, Journal of the Korean Physical Society, 42, (2008) 543-548.
[5] B. L. Cushing, V. L. Kolesnichenko and C. J. O’Connor,“Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles” , Chemical Review, 104, (2004) 3893-3946.
[6] R. Srinivasan, N. R. Yogamalar, J. Elanchezhiyan, R. J. Joseyphus, and A. C. Bose, "Structural and optical properties of europium doped yttrium oxide nanoparticles for phosphor applications," Journal of Alloys and Compounds, 496, (2010) 472-477.
[7] R. M. Krsmanović, Ž. Antić, M. G. Nikolić, M. Mitrić, and M. D. Dramićanin, "Preparation of Y2O3:Eu3+ nanopowders via polymer complex solution method and luminescence properties of the sintered ceramics," Ceramics International, 37, (2011) 525-531.
[8] A. Pandey, M. K. Roy, A. Pandey, M. Zanella, R. A. Sperling, W. J. Parak, A. B. Samaddar and H. C. Verma,“Chloroform- and Water-Soluble Sol–Gel Derived Eu3+/Y2O3 (Red) and Tb3+/Y2O3 (Green) Nanophosphors: Synthesis, Characterization, and Surface Modification”, Journal of IEEE , 8, (2009) 43-50.
[9] S. J. Wang, S. L. Zhong, X. J. Ou-Yang, N. Hu, X. S. Chen, S. P. Wang, et al., "Y(OH)3 and Y2O3 with novel structures: Formation and mechanism," Materials Science and Engineering: B, 162, (2009) 200-204.
[10] A. Vadivel Murugan, A. K. Viswanath, V. Ravi, B. A. Kakade, and V. Saaminathan, "Photoluminescence studies of Eu 3+ doped Y 2O3 nanophosphor prepared by microwave hydrothermal method," Applied Physics Letters, 89, (2006) 123-120.
[11] S. Yin, M. Shinozaki, and T. Sato, "Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3 phosphors by solvothermal reaction," Journal of Luminescence, 126, (2007) 427-433.
[12] D. Zhao, S. Seo, H. Zhang, B.S. Bae, and W. Qin, "Synthesis of Well Dispersed Uniform Sub-4 nm Y2O3:Eu3+ Colloidal Nanocrystals," Journal of Nanoscience and Nanotechnology, 10, (2010) 2036-2039.
[13] Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi , and C. Huang,“Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels”, Journal of the American Chemical Society, 130, (2008) 3023-3029.
[14] Y. Zhao, F. T. Rabouw, C. d. M. Donegá, A. Meijerink, and C. A. van Walree, "Single-source precursor synthesis of colloidal CaS and SrS nanocrystals," Materials Letters, 80, (2012) 75-77.
[15] P. Yang, S. Tretiak, A. E. Masunov, and S. Ivanov, "Quantum chemistry of the minimal CdSe clusters," Journal of Chemical and Physics, 129, (2008) 074709.
[16] M. A. Mohammad Azad Malik, and P.O’Brien, "Precursor Chemistry for Main Group Elements in Semiconducting Materials," Chemical Review, 110, (2010) 4417–4446.
[17] M. H.C. J. ulbinder K. Bange, Jerry D. Harris,Philip E. Fanwick and and A. F. Hepp, "A New Facile Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I−III−VI Semiconductors," Inorganic Chemistry, 42, (2003) 7713-7715.
[18] M. A. Malik, M. Y. Wani, and M. A. Hashim, "Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials," Arabian Journal of Chemistry, (2012) 397-417.
[19] G. D. R. M. ayne Lawrence "Microemulsion-based media as novel drug delivery systems," Advanced Drug Delivery Reviews, 45, (2000) 89-120.
[20] J. Eastoe, M. J. Hollamby, and L. Hudson, "Recent advances in nanoparticle synthesis with reversed micelles," Advances in Colloid and Interface Science, 128-130, (2006) 5-15.
[21] X. Lai, J. E. Halpert, and D. Wang, "Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems," Energy &; Environmental Science, 5, (2012) 5604.
[22] H. Vehkamaki,“Claccical Necleation Theory in Multicomponent Systems,”2005.
[23] O. Fowkes, G.Good, Wendt, "Estimateion of surface energies from contact angle," Nature, 212, (1966) 276-277.
[24] C. J. van Oss, "Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions," Journal of Molecular Recognition, 16, (2003) 177-90.
[25] N. H. Fletcher, "Size Effect in Heterogeneous Nucleation," The Journal of Chemical Physics, 29, (1958) 572.
[26] X. Y. Liu, "Effect of foreign particles: a comprehensive understanding of
3D heterogeneous nucleation," Journal of Crystal Growth, (2002) 237–239.
[27] T. Cosgrove, “Colloid Science,” 2010.
[28] A. H.Kitai, “Solid State Luminescence,”1993.
[29] Y. Q. Zhang and X. A. Cao, "Optical characterization of CdSe quantum dots with metal chalcogenide ligands in solutions and solids," Applied Physics Letters, 99, (2011) 23-106.
[30] W. Zhang, G. Chen, J. Wang, B. C. Ye, and X. Zhong, "Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots," Inorganic Chemistry, 48, (2009) 9723-31.
[31] E. Thomas, “Quantum Chemistry and Spectroscopy” 2009.
[32] 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹,”全華, 2005.
[33] A. L. Tchougréeff and R. Dronskowski, "Nephelauxetic effect revisited," International Journal of Quantum Chemistry, 109, (2009) 2606-2621.
[34] D. L. D. a. J. H. Schulman, "Theory of Concentration Quenching in Inorganic Phosphors," The Journal of Chemical Physics, 22, (1954)1063.
[35] L. Brewer, "Energies of the Electronic Configurations of the Singly, Doubly, Triply Ionized Lanthanides and Actinides,"Journal of the optical society of America , 12, (1971) 1666-1682.
[36] K. L. V. Sluis, "Ionization energies of doubly and triply ionized lanthanides by a linearization technique," The Journal of Chemical Physics, 60, (1974) 1927.
[37] P. Dorenbos, "Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds," Journal of Luminescence, 104, (2003) 239-260.
[38] Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, "Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED," Journal of Luminescence, 111, (2005) 139-145.
[39] R. Bazzi,“Nanoparticles Phosphors Rare Earth OxidesSynthesis and characterization of ultrafine colloids sesquioxides yttrium and gadolinium doped (Eu, Tb, Nd)” PHD thesis,2004
[40] S. Fadaie, M. M. Kashani-Motlagh, A. Maghsoudipour, and B. Faridnia, "Effect of dopant concentration and particle size on fluorescence properties of Y2O3:Eu3+ derived in presence of NIPAM/AAc copolymer," Journal of Materials Science: Materials in Electronics, 24, (2012) 974-978.
[41] T. Hirai, Y. Asada, and I. Komasawa, "Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties," Advances in Colloid and Interface Science, 276, (2004) 339-45.
[42] G. Q. X. Hai Huang, W. S. Chin, L. M. Gan , and C. H. Chew, "Synthesis and characterization of Eu:Y2O3 nanoparticles," Institute of physics publishing, 13, (2002) 318-323.
[43] T. Hirai, Y. Asada, and I. Komasawa, "Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties," Advances in Colloid and Interface Science, 276, (2004) 339-45.
[44] W. A. Kaczmarek and H. Riesen, "Structural and morphological properties of RE3+ doped sesquioxide Y2O3 spherical nanoparticles," Journal of Materials Science, 41, (2006) 8320-8328.
[45] J. M. Sung, S. E. Lin, and W. C. J. Wei, "Synthesis and reaction kinetics for monodispersive Y2O3:Tb3+ spherical phosphor particles," Journal of the European Ceramic Society, 27, (2007) 2605-2611.
[46] H. S. Yoo, H. S. Jang, W. B. Im, J. H. Kang, and D. Y. Jeon, "Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties," Journal of Materials Research, 22, (2011) 2017-2024.
[47] A. P. de Moura, L. H. de Oliveira, E. C. Paris, M. S. Li, J. Andres, J. A. Varela, et al., "Photolumiscent properties of nanorods and nanoplates Y2O3:Eu3+," Journal of Fluoresc, 21, (2011) 1431-8.
[48] R. J. J. Dhanaraj, T. R. N. Kutty, and Chung. H. Lu, "Photoluminescence Characteristics of Y2O3:Eu3+ Nanophosphors Prepared Using Sol-Gel Thermolysis," The Journal of Physical Chemistry. B, 105, (2001) 11098-11105.
[49] W.-W. Zhang, W.-P. Zhang, P.-B. Xie, M. Yin, H.-T. Chen, L. Jing, et al., "Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure," Journal of Colloid and Interface Science, 262, (2003) 588-593.
[50] J.-W. Wang, Y.-M. Chang, H.-C. Chang, S.-H. Lin, L. C. L. Huang, X.-L. Kong, et al., "Local structure dependence of the charge transfer band in nanocrystalline Y2O3:Eu3+," Chemical Physics Letters, 405, (2005) 314-317.
[51] R. V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K. V. S. Ramam, C. P. Camurri, et al., "Combustion synthesis of Y2O3 and Yb–Y2O3," Journal of Materials Processing Technology, 208, (2008) 415-422.
[52] Z. Fu, S. Zhou, T. Pan, and S. Zhang, "Preparation and luminescent properties of cubic Eu3+:Y2O3 nanocrystals and comparison to bulk Eu3+:Y2O3," Journal of Luminescence, 124, (2007) 213-216.
[53] M. Nazarov and C. Yoon, "Controlled peak wavelength shift of Ca1−xSrx(SySe1−y):Eu2+ phosphor for LED application," Journal of Solid State Chemistry, 179, (2006) 2529-2533.
[54] H. l. J. W. Chung, C. H. Lee, J. Kim, and S. H.Kim, "Spray pyrolysis prepared yellow to red color tunable Sr1-xCaxSe:Eu2+ phosphors for white LED," Optics Express, 20, (2012) 12885-12892.
[55] P. Smet, J. Van Haecke, F. Loncke, H. Vrielinck, F. Callens, and D. Poelman, "Anomalous photoluminescence in BaS:Eu," Physical Review B, 74, (2006) 035207.
[56] P. F. Smet, I. Moreels, Z. Hens, and D. Poelman, "Luminescence in Sulfides: A Rich History and a Bright Future," Materials, 3,(2010) 2834-2883.
[57] K. M. Takahiro Kato, and Katsuyasu Sugawara, "Carbon Reduction of Gypsum Produced from Flue Gas Desulfurization," Chemical Engineering Transactions, 29, (2012)805-810.
[58] K. S. K. F. a. M. N. Mihara, "Utilization of calcium sulfide derived from waste gypsum board for metal-containing waste water treatment," Global NEST Journal, 10, (2008) 101-107.
[59] D. Poelman, J. E. Haecke, and P. F. Smet, "Advances in sulfide phosphors for displays and lighting," Journal of Materials Science: Materials in Electronics, 20, (2007) 134-138.
[60] J. E. Van Haecke, P. F. Smet, K. De Keyser, and D. Poelman, "Single Crystal CaS:Eu and SrS:Eu Luminescent Particles Obtained by Solvothermal Synthesis," Journal of The Electrochemical Society, 154, (2007) 278.
[61] X.-H. He and Y. Zhu, "Improvement of morphology and luminescence of CaS:Eu2+ red-emitting phosphor particles via carbon-containing additive strategy," Journal of Materials Science, 43, (2008) 1515-1519.
[62] Y. Zhao, F. T. Rabouw, C. d. M. Donegá, A. Meijerink, and C. A. van Walree, "Single-source precursor synthesis of colloidal CaS and SrS nanocrystals," Materials Letters, 80, (2012) 75-77.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top