跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林孝宇
研究生(外文):Hsiao-Yu Lin
論文名稱:化學轉化甘油為丙酮甘油縮酮作為燃油加氧劑之研究
論文名稱(外文):Production of glycerol acetonide as a fuel oxygenate through chemical conversion of glycerol with acetone
指導教授:林成原林成原引用關係
指導教授(外文):Cherng-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:60
中文關鍵詞:甘油轉化磺酸基孔洞觸媒甘油第三丁基醚丙酮甘油縮酮燃油添加劑
外文關鍵詞:glycerol conversionsulfuric acid-functionalized mesoporous catalystglycerol tert-butyl etherglycerol acetonidefuel additive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
為提昇生質柴油副產品甘油之經濟價值,本研究將甘油轉化為具有較高價值之油品添加劑,首先利用酸性合成法製備孔洞觸媒載體,並使用嫁接-萃取法將孔洞觸媒載體反應為磺酸基孔洞觸媒,所製備完成之觸媒分析其結構與元素組成。實驗發現觸媒具孔洞結構,由硫元素覆蓋過鉀、鈉、氯元素,推斷磺酸基確實嫁接至觸媒載體表面上。其後利用所製備磺酸基孔洞觸媒催化甘油與異丁烯,發現在異丁烯/甘油莫耳比為3、觸媒量為甘油重13 wt.%、反應時間6小時、及反應溫度為110℃的條件下,可得到純度為96%的甘油第三丁基醚。之後以超級柴油重量比例2 wt. %及5 wt. %的甘油第三丁基醚加入超級柴油中,發現此添加劑可以提高油品之蒸餾溫度、比重及十六烷指數。本論文第二階段分別利用本實驗所製備的磺酸基孔洞觸媒與對甲苯磺酸觸媒催化甘油與丙酮的縮酮反應,發現使用對甲苯磺酸觸媒時,在丙酮/甘油莫耳比為3、觸媒量為甘油重8 wt. %、反應時間6小時、及反應溫度為56℃的條件下,製備得到的丙酮甘油縮酮產物具有最高的熱值、最低的運動黏度及冷濾點。再將丙酮甘油縮酮與超級柴油混合,發現在丙酮甘油縮酮/超級柴油重量比例為5/95時,具有最低之冷濾點,但當繼續增加丙酮甘油縮酮/超級柴油重量比例時,發現於超級柴油中的丙酮甘油縮酮開始有沉澱現象。
Glycerol which is a by-product from biodiesel production process was chemically converted to be fuel additives in order to increase its economic value in this study. A silica mesoporous catalyst-carrier was first synthesized in an acidic environment. The catalyst-carrier was then reacted to form a sulfuric acid-functionalized mesoporous catalyst by a grafting-extraction method. The compositions and structure of the prepared catalyst were analyzed afterwards. The experimental results showed that the catalyst bore mesoporous structure and the elemental contents of potassium, sodium, and chlorine were covered with sulfur compound on the catalyst surface. It is inferred that sulfuric acids have been grafted into the carrier surface. The sulfuric acid-functionalized mesoporous catalyst was used for the etherification reaction between glycerol and isobutene. It was found that glycerol tert-butyl ether (GTBE) of 96% purity was produced under the experimental conditions of isobutene / glycerol molar ratio equal to 3, the catalyst / glycerol weight ratio 13 wt.%, the reacting time 6 hrs, and the reacting temperature 110°C. The GTBE product mixture was thereafter mixed with super low sulfur diesel (SLSD) in weight ratios of 2 wt. % and 5 wt. %, respectively. All the distillation temperature, specific gravity and cetane index of the SLSD increased with the addition of the GTBE mixture. At the second stage of this study, the catalyzing effect of the sulfuric acid-functionalized mesoporous catalyst and p-toluene sulfuric acid catalyst for the ketalization reaction between glycerol and acetone were compared. It was observed that the glycerol acetonide product had the highest heating value, and the lowest kinematic viscosity and cold filter filtering point when the p-toluene sulfuric acid catalyst was used under the conditions of acetone / glycerol equal to 3, the catalyst /glycerol weight ratio 8 wt. %, reacting time 6 hrs, and the reacting temperature 56 °C. In addition, the cold filter plugging point of SLSD was found to be decreased the lowest when the glycerol acetonide product at a weight ratio of glycerol acetonide / SLSD equal to 5/95 was added into SLSD. The glycerol acetonide product began to settle and separate from SLSD after further adding glycerol acetonide at a larger weight ratio of glycerol acetonide / SLSD than 5/95.
致謝..................................................Ⅰ
摘要..................................................Ⅱ
Abstract.............................................Ⅲ
目錄..................................................Ⅳ
表目錄................................................Ⅶ
圖目錄................................................Ⅷ
第一章 前言.............................................1
1.1研究背景.............................................1
1.2研究動機.............................................1
1.3研究目的.............................................2
第二章 文獻回顧..........................................3
2.1甘油性質.............................................3
2.2甘油純化技術..........................................3
2.3甘油轉化產品..........................................3
2.3.1 1,3丙二醇(1,3-propanediol)........................4
2.3.2 碳酸甘油(glycerol carbonate)......................4
2.3.3 甘油第三丁基醚(glycerol tert-butyl ether)...........4
2.3.4 丙酮甘油縮酮 (glycerol acetonide)...................5
2.4非均相觸媒應用.........................................5
2.5 觸媒製備方法.........................................6
2.5.1 溶膠-凝膠法........................6
2.5.2 水熱法............................................6
2.5.3 含浸法............................................7
2.6 對甲苯磺酸觸媒特性.....................................7
2.7 磺酸基孔洞觸媒特性.....................................8
第三章 實驗設備及方法......................................9
3.1實驗儀器與設備.........................................9
3.2 實驗材料............................................11
3.3 實驗方法............................................12
3.3.1 製備孔洞觸媒載體步驟.................................12
3.3.2 製備磺酸基孔洞觸媒步驟...............................12
3.3.3甘油轉化為甘油第三丁基醚方法...........................13
3.3.4甘油轉化為丙酮甘油縮酮方法.............................13
3.4觸媒特性分析方法.......................14
3.5 甘油衍生產品性質分析方法................14
第四章 結果與討論.........................................18
4.1 磺酸基孔洞觸媒之特性分析................18
4.2 甘油第三丁基醚之特性分析................19
4.3 觸媒種類與添加量對於甘油與丙酮反應生成物之影響.19
4.4丙酮甘油縮酮添加量對超級柴油之影響.........21
第五章 結論與建議..........................................23
5.1 結論................................................23
5.2未來研究建議...........................24
參考文獻.................................................25
附表....................................................29
附圖....................................................36
附錄....................................................46

[1] J. V. Gerpen, Biodiesel processing and production, Fuel Processing Technology, vol. 86, pp. 1097-1107, 2005.
[2] 謝志強, 2013年全球生質燃料產業回顧與展望, Industrial Economics &; Knowledge Center View , 2013.
[3] H. E. Mize, A. J. Lucio, C. J. Fhaner, F. S. Pratama, L. A. Robbins, and D. S. Karpovich, Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating, Journal of Agricultural and Food Chemistry, vol. 61, pp. 1319-27, 2013.
[4] A. Jaecker-Voirol, I. Durand, G. Hillion, B. Delfort, and X. Montagne, Glycerin for New Biodiesel Formulation, Oil &; Gas Science and Technology - Revue de l'IFP, vol. 63, pp. 395-404, 2008.
[5] L. P. Ozorio, R. Pianzolli, M. B. S. Mota, and C. J. A. Mota, Reactivity of Glycerol/Acetone Ketal (Solketal) and Glycerol/Formaldehyde Acetals toward Acid-Catalyzed Hydrolysis, Sociedade Brasileira de Química, vol. 23, pp. 931-937, 2012.
[6] A. Drozdzynska, K. Leja, and K. Czaczyk, Biotechnological production of 1,3-propanediol from crude glycerol, Biotechnology,Computational Biology and Bionanotechnology, vol. 92(1), pp. 92-100, 2011.
[7] H. Hua and T. K. Wooda, An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol, Biochemical and Biophysical Research Communications, vol. 391, pp. 1033-8, 2010.
[8] X. Yu, Review of environmental risk assessment of gasoline oxygenate methyl tert-butyl ether (MTBE), Ecologic Science, vol. 22(3), pp. 256-257, 2003.
[9] Li-guo Ren, Zhang Xiao-li, and G. Wen-yi, Condensation of Benzaldehyde With Glycerol on the Silica-Supported H3PW12O40 Catalysts, Liaoning University of Petroleum &; Chemical Technology, vol. 29, p. 4, 2009.
[10] Wikipedia, http://zh.wikipedia.org/wiki/甘油, 2013.7.30.
[11] M. Rossi, Future of glycerol, new usages for a versatile raw material, Royal Society of Chemistry, pp. 1-17, 2008.
[12] S. Kongjao, S. Damronglerd, and M. Hunsom, Purification of crude glycerol derived from waste used-oil methyl ester plant, Korean Journal of Chemical Engineering, vol. 27, pp. 944-949, 2010.
[13] Y. Tan, S. Ou, and Y. Wang, Purification of glycerol from the by-product of biodiesel, China Oils and Fats, vol. 32, pp. 44-46, 2007.
[14] Y. Su, H. Wang, G. Bao, Z. Wu, and D. Wang, purification of glycerol from the by-product of biodiesel, China Oils and Fats, vol. 33, pp. 58-60, 2008.
[15] K. O. Yu, S. W. Kim, and S. O. Han, Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae, Bioresource Technology, vol. 101, pp. 4157-61, 2010.
[16] C. Cardona, J. Posada, and M. Montoya, Use of glycerol from biodiesel production: Conversion to added value products, Proceedings of European Congress of Chemical Engineering (ECCE-6), pp. 16-20, 2007.
[17] K. Tomohito and O. Munehisa, Process for the preparation of glycerol carbonate, United State Patent 6495703 B1,2001.
[18] L. Ning, Y. Ding, W. Chen, L. Gong, R. Lin, Y. Lu, and Q. Xin, Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acid, Chinese Journal of Catalysis, vol. 29(3), pp. 212-214, 2008.
[19] W. Choi, Glycerol-based biorefinery for fuels and chemicals, Recent Pat Biotechnol, vol. 2, pp. 173-80, 2008.
[20] M. A. Dasari., P. P. Kiatsimkul., W. R. Sutterlin., G. J., and Suppes, Low-pressure hydrogenolysis of glycerol to propylene glycol, Applied Catalysis A: General, vol. 281, pp. 225-231, 2005.
[21] M. M. Houck, R.E.Menold, and R.A.Huff, Poly(Trimethylene Terephthalate): A New Type Of Polyester Fibre, problemsofForensicSciences, vol. 3, pp. 218-221, 2001.
[22] H. J. Liu, D. J. Zhang, Y. H. Xu, Y. Mu, Y. Q. Sun, and Z. L. Xiu, Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale, Biotechnology Letters, vol. 29, pp. 1281-5, 2007.
[23] E. Wilkens, A. K. Ringel, D. Hortig, T. Willke, and K. D. Vorlop, High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a, Applied Microbiology and Biotechnology, vol. 93, pp. 1057-63, 2012.
[24] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, and C. D. Pina, From glycerol to value-added products, Angewandte Chemie, vol. 46(24), 2007.
[25] M. G. Álvarez, A. M. Frey, J. H. Bitter, A. M. Segarra, K. P. de Jong, and F. Medina, On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone, Applied Catalysis B: Environmental, vol. 134-135, pp. 231-237, 2013.
[26] Security Identifiers, Isobutylene, Security Identifiers, 2003.
[27] J. Wu, J. Chang, M. Huang, and J. Lin, Study on the Synthesis of Polyol Tert-Butyl Ether, Petroleum, vol. 46(4), p. 21~37, 2010.
[28] H. J. Lee, D. Seung, I. N. Filimonov, and H. Kim, Etherification of glycerol by isobutylene. Effects of the density of acidic sites in ion-exchange resin on the distribution of products, Korean Journal of Chemical Engineering, vol. 28(3), pp. 756-762, 2010.
[29] K. Klepacova, D. Mravec, A. Kaszonyi, and M. Bajus, Etherification of glycerol and ethylene glycol by isobutylene, Applied Catalysis A: General, vol. 328, pp. 1-13, 2007.
[30] W. Zhao, B. Yang, C. Yi, Z. Lei, and J. Xu, Etherification of Glycerol with Isobutylene to Produce Oxygenate Additive Using Sulfonated Peanut Shell Catalyst, Industrial &; Engineering Chemistry Research, vol. 49, pp. 12399-12404, 2010.
[31] Chemicalbook, http://www.chemicalbook.com/CAS_100-79-8.htm, 2013.
[32] F. Zhai and H. Yian, Study of the synthesis of glycerol acetonide, Henan Science, vol. 29, pp. 280-282, 2011.
[33] 邱柏瑞, 具雙硫官能基中孔洞材料 SBA-1的合成與鑑定, 國立中央大學化學研究所碩士論文, 2010.
[34] L.L. Hench and J. K. West, The sol-gel process,, Chemical Reviews, vol. 90(1), pp. 33-72, 1990.
[35] Petitto C, Mutin H.P, and D. G, Hydrothermal activation of silver supported alumina catalysts prepared by sol-gel method: Application to the selective catalytic reduction (SCR) of NOx by n-decane, Applied Catalysis B: Environmental, vol. 134-135, pp. 258-264, 2013.
[36] H. F. Guo, Z. F. Zhu, P. Yan, Y. N. Wu, S. M. Li, and L. Y. Wang, Synthesis of terpinyl acetate over SO4 2 –/SnO2-CeO2 solid super acid catalyst, Petrochemical Technology, vol. 36(6), pp. 565-569, 2007.
[37] S. M. Tsai, Preparation of titanate nanotube/copper oxide heterojunction for enhanced visible light-driven photoactivity towards bisphenol A degradation using microwave assisted hydrothermal method, Biomedical Engineering &; Environmental Sciences, 2012.
[38] J.H. Xu, X.C. Li, P. Li, and X. H. CaO, SO42- /ZrO2 solid acid catalyst prepared by hydrothermal method and its application in the synthesis of N -butyl acetate, Nanchang University, vol. 29(2), pp. 106-109, 2007.
[39] X. C. Li, P. Li, and J. Li, Preparation of SO42-/ZrO2 catalyst through hydrothermal modification and its catalytic activity in esterification reaction, Fine Chemicals, vol. 23(2), pp. 133-135, 2006.
[40] M. Rahsepar, M. Pakshir, Y. Piao, and H. Kim, Preparation of Highly Active 40 wt.% Pt on Multiwalled Carbon Nanotube by Improved Impregnation Method for Fuel Cell Applications, Fuel Cells, vol. 12, pp. 827-834, 2012.
[41] Wikipedia, http://zh.wikipedia.org/wiki/對甲苯磺酸, 2013.7.30.
[42] 王曉立, 田桂芝, 孟兆海, 合成高纯對甲苯磺酸新工藝, 當代化工, vol. 31, pp. 206-208, 2002.
[43] 林靜儀, 中孔洞二氧化矽奈米顆粒的合成與鑑定, 國立清華大學化學系碩士論文, 2007.
[44] 李和聰, 製備二氧化矽中孔洞材料及其對於銅及鎘離子吸附之研究, 國立成功大學化學系研究所碩士論文, 2008.
[45] 登盈儀器有限公司, 高溫爐使用說明書, 2009.
[46] 黃永盛, SEM/EDS的原理與操作應用之簡介, 科儀新知, vol. 17, pp. 36-54, 1995.
[47] 泛群股份有限公司, 型號R-2000 V1 旋轉真空濃縮機操作手冊.2013
[48] Parr Company, 1261 isoperibol bomb calorimeter operation instrument manual, 1994.
[49] Schott公司, 黏度管使用操作手冊, 2005.
[50] Cannon Instrument Company, Certificate of calibration of viscometer No. 1K698, 2006.
[51] 王岱淇, 熱工實驗, 高立圖書有限公司, 1990.
[52] 柯清水, 石油化學概論, 正文書局, pp. 131-133, 1990.
[53] J. B. Heywood著,蘇金佳譯, 內燃機. 臺灣臺北: 麥格羅. 希爾, 1996.
[54] G. Jo, D. C, E. N, and Quiros, Comparing Diesel Fuels at Various T90 Distillation Temperatures: Engine Performance, Vibration and Emissions, Philippine Engineering Journal, vol. 25, pp. 23-34, 2011.
[55] F. G. Lepri, E. S. Chaves, M. A. Vieira, A. S. Ribeiro, A. J. Curtius, L. C. C. DeOliveira, and R. C. DeCampos, Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques-a review, Applied Spectroscopy Reviews, vol. 46, pp. 175-206, 2011.
[56] Petroleum Analyzer Company, HAD-620 operation instrument manual, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top