(3.237.20.246) 您好!臺灣時間:2021/04/15 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魯浩
論文名稱:圓錐型環狀液膜破裂與霧化的數值分析
論文名稱(外文):Numerical Analysis for Breakup and Atomization of Annular Liquid Films of Cone Type
指導教授:闕振庚
指導教授(外文):S. G. Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:霧化噴嘴環狀液膜破裂長度霧化液滴
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
環狀旋性液膜的噴灑與霧化過程是一項與我們日常生活息息相關的重要技術,對於各種實用燃燒裝置的性能,具有關鍵性的影響,尤其是燃燒工業方面,應用非常廣泛,但造成液膜破裂進而產生霧化液滴的真正機制卻未完全瞭解,而且理論上更是進展不多。因此,本研究主要針對液體進入空氣霧化式燃油噴嘴後形成液態薄膜之破裂情形、液滴分布以及霧化效果進行數值分析。
首先,採用BFC座標( Body Fitting Coordinate )所推導之環狀液膜動力模式,針對其中旋性方向速度不為零,所形成之旋性環狀液膜的運動流場進行數值分析,並模擬圓錐擴散型之環狀液膜的形狀、張角、以及斷裂長度。
接著以液膜表面波穩定理論為破裂基礎,進行液膜表面不穩定波成長率的預測分析,包括數值分析表面不穩定波的成長率受到液膜厚度、速度、黏度、表面張力、以及燃燒室內壓力的影響,並將結果討論分析,以提供液膜斷裂與霧化的機制。
最後利用帶狀破裂模式( Ligament Breakup )為基本假設,進行主要霧化模式的數值分析,此一霧化模式採用環狀液膜運動流場隱埋法,並與液膜表面波不穩定波成長率分析連結,分析液膜斷裂與液帶形成,進而形成霧化液滴,而預測主要霧化液滴的尺寸分布。驗證方面,主要以文獻上的過去實驗研究為基準線,即當角度固定時,藉由空氣與液體流量的改變,來觀察在各種不同流量時之液膜的破裂長度及破裂後之液滴分布情形,將所得之數值資料與實驗結果作比對分析,歸納出正確的霧化模式。

The spray and atomization of annular swirling liquid films is an important technique associated with our daily lives closely. Especially, it plays a key role in the performance of combustion devices that have been widely used for applications of combustion industry. However, the breakup mechanism and droplet formation of liquid films are not still fully understood and have hampered the development of theoretical methods. Therefore, liquid entering into the air atomizing fuel nozzle to form a liquid film, film breakup, the droplet formation and distribution were numerically analyzed in the present study.

First of all, the present study used equations of motion of annular film based on the Body Fitting Coordinate to numerically simulate the film motion in which the speed is not zero in the swirling direction. The numerical analyses included simulation of cone shape, film angle, and breakup length of the annular liquid films.

Then, the research used liquid film surface stability theory as a breakup foundation for liquid films to analyze growth rates of unstable waves on the film surface. Effects of thickness, velocity, viscosity, surface tension, and the combustion chamber pressure on growth rates of unstable waves were also analyzed. The results were discussed and analyzed to provide a liquid film breakup criteria and atomization mechanism.

Finally, the ligament breakup was basically assumed for numerical analysis of primary atomization model. The atomization model used the jet embedding method to couple the annular liquid film motion with unstable wave growth rate analysis along the film surface to analyze liquid film break, the liquid ligament formation, and the formation of atomized droplets. Thus, the predictions of droplet size distribution were obtained for primary atomization. For verification, past experimental studies in the literature were mainly utilized as the baseline to compare the present studies including liquid film breakup and the droplet size for liquid films ejected from a fixed metering-angle nozzle at various flow rates. The comparison results were discussed and summarized for the present atomization mode.

摘要……………………………………………………………………………i
英文摘要…………………………………………………………………………ii
目錄……………………………………………………………………………iii
圖目錄…………………………………………………………………………iv
表目錄…………………………………………………………………………vii
符號表…………………………………………………………………………viii
第一章 導論……………………………………………………………………1
1-1前言………………………………………………………………1
1-2研究動機…………………………………………………………5
1-3文獻回顧………………………………………………………8
1-4研究目標……………………………………………………10
第二章 理論模式……………………………………………………………11
2-1液膜模擬分析………………………………………………11
2-2液膜不穩定分析………………………………………………18
2-3液膜破裂霧化分析……………………………………………21
2-4 計算條件………………………………………………………24
第三章 結果與討論…………………………………………………………32
3-1液膜外型…………………………………………………32
3-2波成長率…………………………………………………46
3-3 斷裂霧化…………………………………………………55
第四章 結論與建議……………………………………………………63
4-1結論………………………………………………………63
4-2建議………………………………………………………64
參考文獻…………………………………………………………………66

Lefebvre, A. H., ”Gas Turbine Combustion”, Hemisphere Publishing Corp., New York, NY, 1983.
Lefebvre, A. H., “Atomization And Spray”, Hemisphere Publishing Corp., New York.,1989.
Dyke, M. Van, An Album of Fluid Motion, The Parabolic Press, Stanford, CA, 1982.
Monia, D. A., “Problems and Promises in Gas Turbine Combustor Design Development, ” Gas Turbine Combustor Design Problem, edited by Lefebvre, A.H., 1980.
Schuman, M., and Webber, W., “Transient Performance Program,” AFRPL-TR-80-2, 1980.
Habchi, S. D., and Przekwas, A. J., “REFLEQS-2D: A Computer Program for Turbulent Flows With and Without Chemical Reaction, Vol. 1: User’s Manual,” GR-88-4, CFD Research Corporation, Huntsville, AL, 1989.
Ratcliff, M. L., and Smith, C. E., “REFLEQS-2D: A Computer Program for Turbulent Flows With and Without Chemical Reaction, Vol. 2: Validation Manual,” GR-88-4, CFD Research Corporation, Huntsville, AL, 1989.
Mongia, H. C., Reynolds, R. S., and Srinrasan, R., “Multidimensional Gas Turbine Combustion Modeling: Applications and Limitation,” AIAA Journal, Vol. 24, 1986, p.890.
Ferrenberg, A. J., and Varma, M. S., “Atomization Data Requirement for Combustor Modeling,” NASA Report NAS8-34504, 1986.
Schuman, M., and Webber, W., “Transient Performance Program,” AFRPL-TR-80-2, 1980.
Chiu, H. H., “Effects of Bipropellant Spray Injection and Atomization on Vaporization and Combustion Performance,” Rocket Performance Panel of JANNAF, NASA George C. Marshall Space Flight Center, May 1987.
Sallam, K. A., Dai, Z., and Faeth, G. M. , ”Liquid Breakup at the Surface of Turbulent Round Liquid Jets,” International Journal of Multiphase Flow, Vol. 28, 2002, pp. 427-779.
Sterling, A. H., and Sleicher, C. A., “The Instability of Capillary Jets,” Journal of Fluid Mechanics, Vol. 68, 1975, p. 477.
Reitz, R. D., and Bracco, F. V., “Mechanism of Atomization of a Liquid Jet,” Phys. Fluid, Vol. 25, 1982, p. 1730.
Lin, S. P., and Kang, D. J., “Atomization of a Liquid Jet,” Phys. Fluid, Vol. 30, 1987, p. 2000.
Przekwas, A. J., Chuech, S. G., and Singhal, A. K., “Numerical Modeling for Primary Atomization of Liquid Jets,” AIAA-89-0163, 1989.
Lefebvre, A. H., “Airblast Atomization,” Prog. Energy Combustion Sci., Vol. 6, 1980, P. 233.
Rayleigh, Lord, “On the Instability of Jets”, Proceeding of London Mathematics Society, Vol.10, 1897, p.4.
Rayleigh, Lord, Theory of Sound, London, Macmillan, 2^nd ed. (reprinted in 1945, New York, Dover), 1896.
Weber, C., “Zum Zerfall eines Flussigkeitsstrahles(On the Disruption of Liquid Jets)”, Z. Angew, Math. Mech., Vol. 11, 1931, p. 136.
Lin, S. P., and Reitz, R. D., “Drop and Spray Formation from a Liquid Jet,” Annu. Rev. Fluid Mech., Vol. 30, 1998, pp. 85-105.
Inamura, T., and Daikoku, M., “Numerical Simulation of Droplet Formation from Coaxial Twin-Fluid Atomizer,” Atomization and Sprays, Vol. 12, 2002, pp. 247-266.
Faeth, G. M. “Current Status of Droplet and Liquid Combustion,” Prog. Energy Combustion Sci., Vol. 3, 1977, pp.191.
Squire, H. B., "Investigation of the Instability of a Moving Film," British Journal of an Application Physics, Vol. 4, 1953, p. 167.
Haggerty, W. W., and Shea, J. F., “A Study of the Stability of Plane Fluid Sheets,” Journal of Appl. Mech., Vol. 22, 1955, p. 509.
Fraser, R. P., Eisenklam, P., Dombrowski, N., and Hasson, D., “Drop Formation from Rapidly Moving Liquid Sheets,” Amer. Inst. of Chem. Journal, Vol. 8, 1962, p. 672.
Dombrowski, N., and Hooper, P., “The Effect of Ambient Density on Drop Formation in Sprays,” Chem. Energ. Sci., Vol. 17, 1962, p.291.
Lozano, A., and Barreras, F., “Experimental Study of the Gas Flow in an Air-Blasted Liquid Sheet,” Experiments in Fluids, Vol. 31, 2001, pp. 367-376.
Li, X., and Shen, J., “Experiments on Annular Liquid Jet Breakup,” Atomization and Spray, Vol. 11, 2001, pp. 557-573.
Kim, W. T., Hub, K. Y., Friedman, J. A., and Renksizbulut, M., “Numerical Investigation of a Steady Nonevaporating Hollow-Cone Spray Interacting with Annular Air Jet,” Atomization and Sprays, Vol. 11, 2001, pp. 187-200.
Amsden, A. A., KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geomtries, Los Alamos Natl. Lab. Rep. LA-12503-MS, March 1993.
Liao, Y., Jeng, S. M., Jog, M. A., and Benjamin, M. A., “Advanced Sub-Model for Airblast Atomizers,” Journal of Propulsion and Power, Vol. 17, No. 2, 2001, pp. 411-417.
Baird, M. H. I. and Davidson, J.F.,”Annular jets-1”,Chemical engineering Science, 1962, Vol.17, pp467-472.
Binnie, A. M. , and Squire, H.B., "Liquid Jets of annular Cross Section, "The Engineer, Vol. 171, 1941, p. 236.
Graves, C. C. and Bahr, D. W.,"Atomization and Evaporat Liquid Fuels" National Advisory Committee for Aeron Report No. 1300, 1959.
Chuech, S. G.,” Numerical Simulation of Non-swirling and swirling Annular Liquid Jets”, AIAA Journal Vol.31, No.6, June 1993.
Dombrowski, N., and Johns, W.R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets”, Chemical Engineering Science, Vol.18, 1963, p.203.
Meyer, J. and Weihs, D., “Capillary Instability of an Annular Liquid Jet”, J. of Fluid Mechanics, Vol. 179, 1987, p. 531.
Dombrowski, N., and Fraser, R.P., “A photographic Investigation into the Disintegration of Liquid Sheets,” Philosophical Royal Society, vol. A247, 1954, p.101.
York, J.L., and Stubbs, H.E., “Photographic Analysis of Spray Trans. ASME,” Vol. 74, 1952, p.1157.
Rizk, N. K., “Studies on Liquid Sheet Disintegration in Airblast atomizers,” Ph. D. Thesis, Canfield Institute of Technology, 1977.
Mao, C. P., Chuech, S. G., and Przekwas A. J., 1990, ”An Experimental and Theoretical Analysis of Pure Airblast Atomization,”1990 ASME TURBO EXPO,the 35th International Gas Turbine &; Aeroengine Congress &; Exposition, ASME paperNo.90-GT-88, Brussels, Belgium.
Giffen, E. and Muraszew, A., “The Atomization of Liquid Fuels,” John Wiley &; Sons, Inc., New York, 1953.
Shiao, Z. H. and Chuech, S. G., “Swirling Effects on Annular Liquid Jets,” Proceedings of 23th Conference on Theoretical and Applied Machanics, HsinChu, Taiwan.
Rayleigh, Lord, “On the Instability of Jet ”, Proceeding of London Mathematics Society, Vol.10, 1897, p.4.
Rangel, R. H. and Sirignano, W. A., " The Linear and Nonlinear Instability of a Fluid Sheet," Physics Fluids, A3 (10), 1991, p.2392.
Mansour, A. and Chigier, N., "Effect of Turbulence on the Stability of Liquid Jets and the Resulting Droplet Size Distributions," Atomization and Sprays, Vol.4, No.5, 1994, p.583.
Ruiz, F. and Chigier, N. A., "Design and Uncertainty Analysis of a Series of Experiments in Seven Variables ", Vol.31, No.6, 1993, p.1022.
Huzel, D. K., and Huang, D. H., "Modern engineering for Design of Liquid Propellant Rocket Engine", Vol.25, p.289-295, 1959.
Chuech, S. G., Przekwas, A. J., “Numerical Modeling for Airblast Atomization,” CFDRC Report 4060/1, 1989.
Jasuja, A. K., “Atomization of Crude and Residual Fuel Oils”, ASME Paper 78/GT/83, Presented at ASME Gas Turbine Conference, London, 1978.
Radcliffe, A., “Fuel Injection”, sec. D, Vol. XI, High Speed Aerodynamics and Jet Propulsion, Princeton University Press, 1960.
Abou-Ellail, M. M. M., Elkotb, M. M., and Rafat, N. M., “Effect of Fuel Pressure, Air Pressure and Air Temperature on Droplet Size Distribution in Hollow-Cone Kerosene Sprays”, Proceedings of the First International Conference on Liquid Atomization and Spray Systems, 1978, pp. 85-92.
Simmons, H. C., “the Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Type”, ASME Paper 79-WA/GT-5, 1979.
Smith, C. E., Graves, C. B., Johnson, B. V., and Roback, R., “Advanced Fuel Injector Characterization”, Phase I Design Report, Naval Regional Contracting Center, Contract No.N00140-83-C-8899, 1986.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔