(3.236.228.250) 您好!臺灣時間:2021/04/17 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖元獅
論文名稱:結合驅動薄膜與止流閥之氣動式微幫浦設計與製作
論文名稱(外文):Design and Fabrication of a Pneumatic Micropump with a Driving Membrane and Microvalves
指導教授:沈志忠沈志忠引用關係
指導教授(外文):Jyh-Jong Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:微幫浦止流閥薄膜式止流閥軟微影技術中空微結構
外文關鍵詞:micropumpsmicrovalesmembrane-type microvalvessoft lithographyhollow micro-structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
一般氣動式微幫浦以薄膜作為致動元件並且搭配兩個片狀止流閥限制逆流,藉由高壓空氣使薄膜產生週期性振動,驅使流體前進。片狀止流閥是在流道中加入擋塊與片狀閥門,因順向流阻高其順向流量低,而逆向流因片狀閥門與流道壁有間隙而無法有效降低逆向流量。本實驗室戴志安學長提出薄膜式止流閥概念,在兩個不同管徑的垂直流道之間,利用薄膜上的半圓形孔洞,作為液體通道而中間未穿孔的部分作為閥門,擋住由大管徑流道往小管徑流道的逆向流。本研究嘗試結合驅動薄膜與兩個薄膜式止流閥設計一個新式微幫浦,並與一般片狀止流閥微幫浦比較兩者的流量性能。兩種微幫浦皆以聚二甲基矽氧烷為材質,並以軟微影技術完成微幫浦的製作。
實驗結果顯示,在工作氣體壓力60 kPa、電磁閥頻率2 Hz下,我們的微幫浦最大流率為48.1 L/min,最大可承受背壓為17 kPa。在相同工作條件下,片狀式閥門微幫浦最大流率為23.5 L/min,最大可承受背壓為13 kPa。我們微幫浦的最大流率是片狀式閥門微幫浦的2.05倍,其關鍵因素可由微幫浦的順流與逆流特性看出,我們微幫浦的逆向流阻與順向流阻的比值為4.46,而另一微幫浦的比值為2.01,兩者比例為2.22,恰與流率測試結果比例相符合。
A pneumatic micropump usually uses a membrane as an actuating element and two flap-type check valves to resist reverse flow. High-pressure air is applied to make membrane produce periodic deflection, driving fluid forward. Flap-type microvalve has disadvantages such as low forward flow rate due to its high fluidic resistance, and reverse flow leakage due to incomplete sealing between the flap and channel walls. A membrane-type microvalve was proposed by our laboratory member, Chih-An Dai. It has a feature that a membrane with holes around its edge sits between two vertical channels with different diameters. It has the advantage that forward flow is easy to cross membrane holes from small channel to large channel; however, reverse flow is efficiently blocked as the small channel is completely covered by the membrane .
To enhance the performance of micropump, this study is to design a new micropump with a membrane and two membrane-type microvalves. The usual pump with flap-type membrane is used as a baseline design. The micropumps are made of polydimethylsiloxane and fabricated by soft lithography technique.
Studies shows that the maximum flow rate of our micropump is 48.1 L/min under 60 kPa working pressure and 2 Hz working frequency, enduring maximum back pressure of 17 kPa; maximum flow rate of the baseline micropump is 23.5 L/min under the same condition, enduring maximum back pressure of 13 kPa. According to the studies, the the maximum flow rate of our micropump is 2.05 times of the baseline micropump. This outperformance can attribute to a good reverse/forward fluidic resistance ratio. The ratio of our pump is 2.22 times of the baseline micropump, which is close to the ratio of maximum flow rates.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.2.1 氣動式微幫浦 4
1.2.2 止流閥 6
1.2.3 中空微結構 8
1.3 文章架構 10
第二章 微幫浦設計 11
2.1 水平式微幫浦 11
2.2 垂直式微幫浦 14
第三章 微幫浦製作 18
3.1 軟微影(Soft Lithography) 18
3.2 水平式微幫浦製作 19
3.2.1 水平式微幫浦之液體流道層製作 20
3.2.3 各層結構接合步驟 25
3.3 垂直式微幫浦製作 26
3.3.1 垂直式微幫浦之閥門層1與閥門層2之製作 28
3.3.2 液體流道層製作 32
3.3.3 各層接合步驟 32
第四章 實驗結果與討論 33
4.1 實驗架設 33
4.2 水平式微幫浦實驗結果 36
4.3 垂直式微幫浦實驗結果 40
4.4 實驗結果比較 43
第五章 結論與未來展望 47
5.1 結論 47
5.2 未來展望 47
參考文獻 48
附錄 微幫浦母模與晶片製程參數 51


[1] M. A. Burns, "ANALYTIC CHEMISTRY: Everyone's a (Future) Chemist," Science, vol. 296, pp. 1818-1819, 2002.
[2] M. L. Shuler, A. Sin, et al., "A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining," Biotechnology and Bioengineering, vol. 85, pp. 359-363, Feb 5 2004.
[3] M. A. Unger, H. P. Chou, et al., "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, pp. 113-116, Apr 7 2000.
[4] J. M. Berg, R. Anderson, et al., "A two-stage discrete peristaltic micropump," Sensors and Actuators a-Physical, vol. 104, pp. 6-10, Mar 15 2003.
[5] B. Husband, M. Bu, et al., "Novel actuation of an integrated peristaltic micropump," Microelectronic Engineering, vol. 73-74, pp. 858-863, Jun 2004.
[6] D. S. Lee, J. S. Ko, et al., "Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance," Thin Solid Films, vol. 468, pp. 285-290, Dec 1 2004.
[7] C. P. Jen and Y. C. Lin, "Design and simulation of bi-directional microfluid driving systems," Journal of Micromechanics and Microengineering, vol. 12, pp. 115-121, Mar 2002.
[8] W. H. Grover, A. M. Skelley, et al., "Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices," Sensors and Actuators B-Chemical, vol. 89, pp. 315-323, Apr 1 2003.
[9] K. Lim, S. Kim, et al., "Roller-type squeezing pump with picoliter handling capability," Sensors and Actuators B-Chemical, vol. 92, pp. 208-214, Jul 1 2003.
[10] C. H. Wang and G. B. Lee, "Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels," Journal of Micromechanics and Microengineering, vol. 16, pp. 341-348, Feb 2006.
[11] C. H. Ahn and M. G. Allen, "Fluid Micropumps Based on Rotary Magnetic Actuators," IEEE, 1995.
[12] J. Dopper, M. Clemens, et al., "Micro gear pumps for dosing of viscous fluids," Journal of Micromechanics and Microengineering, vol. 7, pp. 230-232, Sep 1997.
[13] E. Meng, W. Xuan-Qi, et al., "A check-valved silicone diaphragm pump," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 62-67.
[14] O. C. Jeong, S. W. Park, et al., "Fabrication of a peristaltic PDMS micropump," Sensors and Actuators a-Physical, vol. 123-24, pp. 453-458, Sep 23 2005.
[15] C. Cabuz, W. Herb, et al., "The dual diapharm pump," presented at the Micro Electro Mechanical Systems , MEMS 2001 , IEEE International Conference 2001, 2001.
[16] M. Koch, A. G. R. Evans, et al., "The dynamic micropump driven with a screen printed PZT actuator," Journal of Micromechanics and Microengineering, vol. 8, pp. 119-122, Jun 1998.
[17] M. Khoo and C. Lin, "A novel micromachined magnetic membrane microfluid pump," presented at the 22nd Annual EMBS International Conference, 2000.
[18] S. Bohm, W. Olthuis, et al., "A bi-directional electrochemically driven micro liquid dosing system with integrated sensor/actuator electrodes," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 92-95.
[19] N. A. Polson and M. A. Hayes, "Microfluidics: controlling fluids in small places," Anal Chem, vol. 73, pp. 312A-319A, Jun 1 2001.
[20] G. M., J. T.B., et al., "DEP microactuators of Liquids," presented at the IEEE Micro Electro Mechanical Systems Conference, 2001.
[21] A. S.H. and K. Y.K., "Fabrication and Experiment of a planar micro ion drag pump," Sensors and Actuators A: Physical, vol. 70, pp. 1-5, 1998.
[22] J. S. Jang and S. S. Lee, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors and Actuators a-Physical, vol. 80, pp. 84-89, Mar 1 2000.
[23] E. Stemme, "A valveless diffuser/nozzle-based fluid pump," Sensors and Actuators A: Physical, vol. 39, pp. 159-167, 2001.
[24] J. H. Ni, F. L. Huang, et al., "A planar PDMS micropump using in-contact minimized-leakage check valves," Journal of Micromechanics and Microengineering, vol. 20, Sep 2010.
[25] 戴志安 and 沈志忠, "三維止流閥之設計與研製," presented at the 第14 屆奈米工程暨微系統技術研討會, 2010.
[26] W. L. Benard, H. Kahn, et al., "A titanium-nickel shape-memory alloy actuated micropump," in Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference on, 1997, pp. 361-364 vol.1.
[27] J. Loverich, I. Kanno, et al., "Single-step replicable microfluidic check valve for rectifying and sensing low Reynolds number flow," Microfluidics and Nanofluidics, vol. 3, pp. 427-435, Aug 2007.
[28] J. H. Kang, E. Um, et al., "Fabrication of a poly(dimethylsiloxane) membrane with well-defined through-holes for three-dimensional microfluidic networks " Micromechanics and Microengineering, vol. 19, 2009.
[29] J. M. Karlsson, T. Haraldsson, et al., "Fabrication and transfer of fragile 3D PDMS microstructures," Journal of Micromechanics and Microengineering, vol. 22, Aug 2012.
[30] D. C. Duffy, J. C. McDonald, et al., "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Analytical Chemistry, vol. 70, pp. 4974-4984, Dec 1 1998.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔