跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭子毅
研究生(外文):Tzu-Yi Cheng
論文名稱:探討合併使用Lovastatin與Ceramide造成人類膀胱癌細胞T-24死亡的機制
論文名稱(外文):The Combination of Ceramide with Lovastatin Induces Cell Death in Human bladder carcinoma cell T-24
指導教授:唐世杰
指導教授(外文):Shye-Jye Tang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:膀胱癌樂瓦司他汀神經醯胺
外文關鍵詞:Bladder cancerLovastatinCeramideAMPKBAD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:1
膀胱癌為泌尿道腫瘤中發生率最高者。膀胱癌病人經手術及化療藥物治療後,其五年存活率在表淺性腫瘤達90%以上,在局部侵犯者在40-50%;已轉移者則很低。Lovastatin是一種經抑制體內Mevalonate生成而達到降低血脂肪的statin類藥物,近來除廣泛用於治療血脂異常,預防心臟血管疾病外;有諸多研究發現Statin類藥物可抑制腫瘤細胞生長、促進腫瘤細胞Apoptosis的發生、亦可與數種化療藥物(如Doxorubicin)合併使用,以降低化療藥物對身體的傷害或增強化療藥物對於腫瘤的治療效果。在之前研究中發現Ceramide會誘發老鼠膀胱癌細胞MBT-2細胞死亡,其成因為Ceramide誘會發細胞產生代謝壓力,活化細胞內的AMPK,亦會細胞內使Bcl-2 family中Anti-apoptosis Bcl family的Bcl-XL減少、Pro-apoptosis Bcl family的BAD活化,最後使粒線體通透性增加,促使Cytochrome C釋出與外膜電位喪失,但Ceramide對人類膀胱癌細胞T-24細胞卻沒有類似的結果。
本實驗延續前人研究,確認ceramide造成MBT-2細胞死亡的原因及AMPK與BAD活化的關係。實驗結果顯現ceramide會造成MBT-2細胞內AMPK磷酸化及p-BAD去磷酸化,Knock-down BAD可減少ceramide所造成的粒線體外膜電位喪失和細胞死亡。但是在人類T-24細胞並無相同結果,若T-24先以lovastatin 處理後,發現lovastatin可增加ceramide促進細胞死亡的效果,實驗發現單獨使用lovastatin或ceramide處理並不會造成上述效果。進一步加入Mevalonate時,細胞死亡狀況會被抑制。此結果指出ceramide誘發T-24細胞死亡作用和抑制mevalonate pathway有關。另加入AMPK抑制劑Compound C,來觀察AMPK在以ceramide或合併lovastatin處理導致MBT-2、T-24細胞死亡作用是否具有相同重要性。實驗結果發現Compound C會抑制細胞死亡,因此AMPK在此路徑中具重要性。總而言之ceramide誘發MBT-2死亡與AMPK活化、p-BAD去磷酸化導致MBT-2細胞內pro-apoptotic蛋白活化有關,同時lovastatin在ceramide誘導T-24細胞死亡有其重要性。

Lovastatin is a cholesterol-lowering drug, an inhibitor of mevalonate generation, is wildly used in treatment of dyslipidemia and prevention of cardiovascular diseases. In addition, lovastatin can inhibit tumor cells growth and promote tumor cells apoptosis, when it combine with some chemotherapy drugs (such as doxorubicin) to reduce the chemotherapy drug side effects or enhance the antineoplastic effects of chemotherapy drug.
In previous studies, Ceramide was able to induce cell death in MBT-2 mouse bladder cancer cell. Since ceramide will induce cell metabolic stress, it activates AMPK, decreased the expression of anti-apoptosis Bcl family Bcl-XL and increases the expression of Pro-Apoptosis Bcl family BAD, finally increases permeability of mitochondria then induces cytochrome C releasing and mitochondria membrane potential losing. However, in human bladder cancer cells (T-24) were not found similar effects. Now our experiment continues previous studies. Ceramide induced MBT-2 cell death effect was detected AMPK phosphorylation and p-BAD dephosphorylation. Knock-down BAD will induce the decrease of mitochondria membrane potential and cell death by ceramide.
Since the ceramide-induced cell death was not found in T24 human bladder cancer cell, we used lovastatin to improve the effect of ceramide in cell death. After the pretreatment of lovastatin, the ceramide-induced cell death was observed in this cell. Moreover, the cell death was inhibited by addition of mevalonate, indicating that the blockage of mevalonate pathway is essential for the ceramide-induced cell death in T24 cells. Interestingly, combined ceramide with lovastatin was able to induce the activation of AMPK and the loss of mitochondrial membrane permeability, but only adding either ceramide or Lovastatin did not show the effects. Compound C, an AMPK inhibitor, was used to observe whether AMPK has an important role in the treatment of ceramide or combined with lovastatin in the MBT2 and T24 cells respectively. The cell death was inhibited by compound C, showing that AMPK involved ceramide and combined with lovastatin induced cell death. In summary, our study show that ceramide-induced cell death via AMPK activation and p-BAD dephosphorylation to activate the pro-apoptotic protein in MBT2 cells and the co-treatment of lovastatin is essential for the ceramide- induced cell death in T24 cells.

辭謝
摘要..I
Abstract…II
壹、導論..1
一、膀胱癌..1
二、Lovastatin..3
三、Ceramide..5
四、BAD..7
五、AMPK..8
六、研究動機..8
貳、材料與實驗方法..10
一、材料..10
二、實驗方法..13
參、研究結果..20
肆、討論..24
伍、參考文獻..27
陸、附錄..35
柒、補充資料..50
陳奕安 (2012) AMPK涉及調控Ceramide誘導膀胱癌細胞死亡。海洋大學生物科技所碩士論文
Ahirwar, D., Kesarwani, P., Manchanda, P.K., Mandhani, A., and Mittal, R.D. (2008). Anti- and proinflammatory cytokine gene polymorphism and genetic predisposition: association with smoking, tumor stage and grade, and bacillus Calmette-Guerin immunotherapy in bladder cancer. Cancer genetics and cytogenetics 184, 1-8.
Al Hussain, T.O., and Akhtar, M. (2013). Molecular basis of urinary bladder cancer. Advances in anatomic pathology 20, 53-60.
Ayllon, V., Martinez, A.C., Garcia, A., Cayla, X., and Rebollo, A. (2000). Protein phosphatase 1alpha is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis. The EMBO journal 19, 2237-2246.
Basu, S., Bayoumy, S., Zhang, Y., Lozano, J., and Kolesnick, R. (1998). BAD enables ceramide to signal apoptosis via Ras and Raf-1. The Journal of biological chemistry 273, 30419-30426.
Birbes, H., Luberto, C., Hsu, Y.T., El Bawab, S., Hannun, Y.A., and Obeid, L.M. (2005). A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. The Biochemical journal 386, 445-451.
Blume-Jensen, P., Janknecht, R., and Hunter, T. (1998). The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Current biology : CB 8, 779-782.
Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A., and Greenberg, M.E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-1362.
Caraway, N.P., and Katz, R.L. (2010). A review on the current state of urine cytology emphasizing the role of fluorescence in situ hybridization as an adjunct to diagnosis. Cancer cytopathology 118, 175-183.
Case, R.A., and Hosker, M.E. (1954). Tumour of the urinary bladder as an occupational disease in the rubber industry in England and Wales. British journal of preventive &; social medicine 8, 39-50.
Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T., and Cordon-Cardo, C. (2010). Molecular pathways of urothelial development and bladder tumorigenesis. Urologic oncology 28, 401-408.
Chalfant, C.E., Rathman, K., Pinkerman, R.L., Wood, R.E., Obeid, L.M., Ogretmen, B., and Hannun, Y.A. (2002). De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. The Journal of biological chemistry 277, 12587-12595.
Chen, C.L., Lin, C.F., Chang, W.T., Huang, W.C., Teng, C.F., and Lin, Y.S. (2008a). Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111, 4365-4374.
Chen, J.C., Wu, M.L., Huang, K.C., and Lin, W.W. (2008b). HMG-CoA reductase inhibitors activate the unfolded protein response and induce cytoprotective GRP78 expression. Cardiovascular research 80, 138-150.
Chen, M.B., Wu, X.Y., Gu, J.H., Guo, Q.T., Shen, W.X., and Lu, P.H. (2011). Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell biochemistry and biophysics 60, 311-322.
Chiang, C.W., Harris, G., Ellig, C., Masters, S.C., Subramanian, R., Shenolikar, S., Wadzinski, B.E., and Yang, E. (2001). Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97, 1289-1297.
Chiang, C.W., Kanies, C., Kim, K.W., Fang, W.B., Parkhurst, C., Xie, M., Henry, T., and Yang, E. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Molecular and cellular biology 23, 6350-6362.
Clendening, J.W., and Penn, L.Z. (2012). Targeting tumor cell metabolism with statins. Oncogene 31, 4967-4978.
Dahm, P., and Gschwend, J.E. (2003). Malignant non-urothelial neoplasms of the urinary bladder: a review. European urology 44, 672-681.
Danial, N.N. (2008). BAD: undertaker by night, candyman by day. Oncogene 27 Suppl 1, S53-70.
Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241.
Datta, S.R., Katsov, A., Hu, L., Petros, A., Fesik, S.W., Yaffe, M.B., and Greenberg, M.E. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Molecular cell 6, 41-51.
Deng, J., Carlson, N., Takeyama, K., Dal Cin, P., Shipp, M., and Letai, A. (2007). BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer cell 12, 171-185.
Dumitru, C.A., and Gulbins, E. (2006). TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25, 5612-5625.
Fang, X., Yu, S., Eder, A., Mao, M., Bast, R.C., Jr., Boyd, D., and Mills, G.B. (1999). Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 18, 6635-6640.
Franke, T.F., Hornik, C.P., Segev, L., Shostak, G.A., and Sugimoto, C. (2003). PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983-8998.
Fritz, G. (2005). HMG-CoA reductase inhibitors (statins) as anticancer drugs (review). International journal of oncology 27, 1401-1409.
Goldstein, J.L., and Brown, M.S. (1990). Regulation of the mevalonate pathway. Nature 343, 425-430.
Golin, A.L., and Howard, R.S. (1980). Asymptomatic microscopic hematuria. The Journal of urology 124, 389-391.
Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R., and Gulbins, E. (2001). CD95 signaling via ceramide-rich membrane rafts. The Journal of biological chemistry 276, 20589-20596.
Gulati, S., Liu, Y., Munkacsi, A.B., Wilcox, L., and Sturley, S.L. (2010). Sterols and sphingolipids: dynamic duo or partners in crime? Progress in lipid research 49, 353-365.
Hambardzumyan, D., Becher, O.J., Rosenblum, M.K., Pandolfi, P.P., Manova-Todorova, K., and Holland, E.C. (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes &; development 22, 436-448.
Harada, H., Andersen, J.S., Mann, M., Terada, N., and Korsmeyer, S.J. (2001). p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proceedings of the National Academy of Sciences of the United States of America 98, 9666-9670.
Hardie, D.G., Carling, D., and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annual review of biochemistry 67, 821-855.
Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S., Wickel, M., Schneider-Brachert, W., Trauzold, A., Hethke, A., et al. (2004). Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell death and differentiation 11, 550-563.
Heller, J.E. (1986). Asymptomatic microhematuria and urologic disease. JAMA : the journal of the American Medical Association 256, 2674-2675.
Johnson, M.D., Woodard, A., Okediji, E.J., Toms, S.A., and Allen, G.S. (2002). Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. Journal of neuro-oncology 56, 133-142.
Kahn, B.B., Alquier, T., Carling, D., and Hardie, D.G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell metabolism 1, 15-25.
Kashkar, H., Wiegmann, K., Yazdanpanah, B., Haubert, D., and Kronke, M. (2005). Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. The Journal of biological chemistry 280, 20804-20813.
Kato, S., Smalley, S., Sadarangani, A., Chen-Lin, K., Oliva, B., Branes, J., Carvajal, J., Gejman, R., Owen, G.I., and Cuello, M. (2010). Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase. Journal of cellular and molecular medicine 14, 1180-1193.
Kefas, B.A., Cai, Y., Ling, Z., Heimberg, H., Hue, L., Pipeleers, D., and Van de Casteele, M. (2003). AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. Journal of molecular endocrinology 30, 151-161.
Kim, H.J., Oh, J.E., Kim, S.W., Chun, Y.J., and Kim, M.Y. (2008). Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer letters 260, 88-95.
Kuhajda, F.P. (2008). AMP-activated protein kinase and human cancer: cancer metabolism revisited. International journal of obesity 32 Suppl 4, S36-41.
Larsson, S.C., Andersson, S.O., Johansson, J.E., and Wolk, A. (2008). Diabetes mellitus, body size and bladder cancer risk in a prospective study of Swedish men. European journal of cancer 44, 2655-2660.
Laufs, U., and Liao, J.K. (1998). Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. The Journal of biological chemistry 273, 24266-24271.
Lee, Y.M., Uhm, K.O., Lee, E.S., Kwon, J., Park, S.H., and Kim, H.S. (2008). AM251 suppresses the viability of HepG2 cells through the AMPK (AMP-activated protein kinase)-JNK (c-Jun N-terminal kinase)-ATF3 (activating transcription factor 3) pathway. Biochemical and biophysical research communications 370, 641-645.
Letasiova, S., Medve'ova, A., Sovcikova, A., Dusinska, M., Volkovova, K., Mosoiu, C., and Bartonova, A. (2012). Bladder cancer, a review of the environmental risk factors. Environmental health : a global access science source 11 Suppl 1, S11.
Levy, M., and Futerman, A.H. (2010). Mammalian ceramide synthases. IUBMB life 62, 347-356.
Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J.Y., et al. (2011). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell metabolism 13, 376-388.
Lin, C.F., Chen, C.L., Chang, W.T., Jan, M.S., Hsu, L.J., Wu, R.H., Fang, Y.T., Tang, M.J., Chang, W.C., and Lin, Y.S. (2005). Bcl-2 rescues ceramide- and etoposide-induced mitochondrial apoptosis through blockage of caspase-2 activation. The Journal of biological chemistry 280, 23758-23765.
Lin, C.F., Chen, C.L., Chiang, C.W., Jan, M.S., Huang, W.C., and Lin, Y.S. (2007). GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. Journal of cell science 120, 2935-2943.
Ma, Q., Lin, G., Qin, Y., Lu, D., Golka, K., Geller, F., Chen, J., and Shen, J. (2003). GSTP1 A1578G (Ile105Val) polymorphism in benzidine-exposed workers: an association with cytological grading of exfoliated urothelial cells. Pharmacogenetics 13, 409-415.
McConkey, D.J., Lee, S., Choi, W., Tran, M., Majewski, T., Lee, S., Siefker-Radtke, A., Dinney, C., and Czerniak, B. (2010). Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression. Urologic oncology 28, 429-440.
Miyaji, M., Jin, Z.X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S.B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E.T., et al. (2005). Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. The Journal of experimental medicine 202, 249-259.
Morad, S.A., and Cabot, M.C. (2013). Ceramide-orchestrated signalling in cancer cells. Nature reviews Cancer 13, 51-65.
Morad, S.A., Levin, J.C., Shanmugavelandy, S.S., Kester, M., Fabrias, G., Bedia, C., and Cabot, M.C. (2012). Ceramide--antiestrogen nanoliposomal combinations--novel impact of hormonal therapy in hormone-insensitive breast cancer. Molecular cancer therapeutics 11, 2352-2361.
Mullen, T.D., Hannun, Y.A., and Obeid, L.M. (2012). Ceramide synthases at the centre of sphingolipid metabolism and biology. The Biochemical journal 441, 789-802.
Murphy, W.M., Soloway, M.S., Jukkola, A.F., Crabtree, W.N., and Ford, K.S. (1984). Urinary cytology and bladder cancer. The cellular features of transitional cell neoplasms. Cancer 53, 1555-1565.
Okoshi, R., Ozaki, T., Yamamoto, H., Ando, K., Koida, N., Ono, S., Koda, T., Kamijo, T., Nakagawara, A., and Kizaki, H. (2008). Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. The Journal of biological chemistry 283, 3979-3987.
Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J., Hajduk, P.J., et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677-681.
Osmak, M. (2012). Statins and cancer: current and future prospects. Cancer letters 324, 1-12.
Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2001). The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. The EMBO journal 20, 2690-2701.
Piscazzi, A., Costantino, E., Maddalena, F., Natalicchio, M.I., Gerardi, A.M., Antonetti, R., Cignarelli, M., and Landriscina, M. (2012). Activation of the RAS/RAF/ERK signaling pathway contributes to resistance to sunitinib in thyroid carcinoma cell lines. The Journal of clinical endocrinology and metabolism 97, E898-906.
Pollard, C., Smith, S.C., and Theodorescu, D. (2010). Molecular genesis of non-muscle-invasive urothelial carcinoma (NMIUC). Expert reviews in molecular medicine 12, e10.
Porstmann, T., Santos, C.R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, J.R., Chung, Y.L., and Schulze, A. (2008). SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell metabolism 8, 224-236.
Roy, S.S., Madesh, M., Davies, E., Antonsson, B., Danial, N., and Hajnoczky, G. (2009). Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Molecular cell 33, 377-388.
Sanvicens, N., and Cotter, T.G. (2006). Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. Journal of neurochemistry 98, 1432-1444.
Sastry, K.S., Karpova, Y., and Kulik, G. (2006). Epidermal growth factor protects prostate cancer cells from apoptosis by inducing BAD phosphorylation via redundant signaling pathways. The Journal of biological chemistry 281, 27367-27377.
Scheid, M.P., Schubert, K.M., and Duronio, V. (1999). Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. The Journal of biological chemistry 274, 31108-31113.
Schurmann, A., Mooney, A.F., Sanders, L.C., Sells, M.A., Wang, H.G., Reed, J.C., and Bokoch, G.M. (2000). p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Molecular and cellular biology 20, 453-461.
Sharma, S., Ksheersagar, P., and Sharma, P. (2009). Diagnosis and treatment of bladder cancer. American family physician 80, 717-723.
Shimoyama, S. (2011). Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers. Cancer chemotherapy and pharmacology 67, 729-739.
Soloway, M.S., Murphy, W.M., Johnson, D.E., Farrow, G.M., Paulson, D.F., and Garnick, M.B. (1990). Initial evaluation and response criteria for patients with superficial bladder cancer. Report of a workshop. British journal of urology 66, 380-385.
Stancevic, B., and Kolesnick, R. (2010). Ceramide-rich platforms in transmembrane signaling. FEBS letters 584, 1728-1740.
Stein, S.C., Woods, A., Jones, N.A., Davison, M.D., and Carling, D. (2000). The regulation of AMP-activated protein kinase by phosphorylation. The Biochemical journal 345 Pt 3, 437-443.
Vignot, S., Faivre, S., Aguirre, D., and Raymond, E. (2005). mTOR-targeted therapy of cancer with rapamycin derivatives. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 16, 525-537.
Wang, H.G., Pathan, N., Ethell, I.M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T.F., and Reed, J.C. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343.
Worgall, T.S. (2007). Sphingolipids: major regulators of lipid metabolism. Current opinion in clinical nutrition and metabolic care 10, 149-155.
Wu, D., Ren, Z., Pae, M., Guo, W., Cui, X., Merrill, A.H., and Meydani, S.N. (2007). Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. Journal of immunology 179, 4829-4839.
Xu, X.Q., McGuire, T.F., Blaskovich, M.A., Sebti, S.M., and Romero, G. (1996). Lovastatin inhibits the stimulation of mitogen-activated protein kinase by insulin in HIRcB fibroblasts. Archives of biochemistry and biophysics 326, 233-237.
Zeidan, Y.H., and Hannun, Y.A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine 13, 327-336.
Zha, J., Harada, H., Osipov, K., Jockel, J., Waksman, G., and Korsmeyer, S.J. (1997). BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. The Journal of biological chemistry 272, 24101-24104.
Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S.J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619-628.
Zhang, F.L., and Casey, P.J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annual review of biochemistry 65, 241-269.
Zheng, Q.Y., Jin, F.S., Yao, C., Zhang, T., Zhang, G.H., and Ai, X. (2012). Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochemical and biophysical research communications 419, 741-747.
Zhou, X.M., Liu, Y., Payne, G., Lutz, R.J., and Chittenden, T. (2000). Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. The Journal of biological chemistry 275, 25046-25051.
Zundel, W., and Giaccia, A. (1998). Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes &; development 12, 1941-1946.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top