(3.227.235.183) 您好!臺灣時間:2021/04/13 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳漢瑋
研究生(外文):Chen-Han-Wei
論文名稱:低壓化學氣相沉積法成長石墨烯堆疊之拉曼光譜特性研究與應用
論文名稱(外文):Raman investigation and application of stacked graphenes via low pressure chemical vapor deposition
指導教授:黃智賢黃智賢引用關係
指導教授(外文):Hwang-Jih-Shang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:54
中文關鍵詞:石墨烯拉曼堆疊
外文關鍵詞:GrapheneRaman
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
我們研究以人工轉移方式堆疊出多層石墨烯,並研究其拉曼特徵。實驗結果顯示,我們的石墨烯堆疊顯示有兩種A2D/AG的趨勢(A為積分強度),正與tubostratic堆疊和AB堆疊的趨勢相符。某些區塊的確能顯示出很窄的2D band,隱含該區域具有很高的遷移率。進一步地,我們發現石墨烯的拉曼光譜會隨雷射功率變化而有所改善或破壞。我們認為該特性能讓石墨烯應用於記憶體方面。最後,我們並確認石墨稀薄膜本身具有抗腐蝕的特性,它能減低約一半銅片被硝酸腐蝕的效果。我們相信,多層或品質更佳的石墨烯,有機會能有更好的抗腐蝕特性,有賴未來進一步地開發。
Raman characteristics of graphene multilayer prepared through manual stacking of graphene single layers were investigated. The results show that manually stacked graphene layers exhibit two different A2D/AG trends (A indicates the integrated intensity) when graphene layer number increases. The trends conform well with that observed in graphene layers of tubostratic stacking and of AB Bernal stacking, respectively. It is also seen that some regions did show very narrow FWHM of the 2D band peak, implying the regions are of high electron mobility. Further, we also found that the Raman spectra of graphene can be enhanced or destroyed depending on how the excitation laser is applied during the measurement. We believe that this feature indicates a potential memory application of graphene. Finally, as a side finding, we confirm the anticorrosion ability of single layer graphene, which can reduce half the corrosion on copper due to nitric acid etching, if graphene is applied. We expect graphene of multilayered and better quality to have a better anti-corrosion performance.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 簡介 1
第二章 基本原理與文獻回顧 5
2-1 石墨晶體結構 5
2-1-1 高定向熱裂解石墨 6
2-1-2 單層石墨 7
2-1-3 雙層石墨 8
2-2石墨烯的製備方法 10
2-2-1氧化石墨還原法 10
2-2-2插層撥離法 11
2-2-3化學氣相沉積法 11
2-3 拉曼效應 12
2-4 拉曼光譜在石墨烯上的分析 14
2-4-1 D band訊號 14
2-4-2 D’ band訊號 16
2-4-3 G band訊號 16
2-4-4 2D band訊號 17
2-4-5 G、2D band與層數的關係 18
第三章 實驗方法與儀器設備 21
3-1 實驗方法 21
3-1-1 石墨烯的成長 21
3-1-2 石墨烯的轉移 23
3-2 儀器設備 25
3-2-1 高溫爐與反應腔體 25
3-2-2 氣體源及管線 26
3-2-3 化學清洗槽設備 26
3-2-4 顯微拉曼光譜儀 27
第四章 實驗結果與討論 29
4-1 成長單層石墨烯 29
4-2 手工堆疊多層石墨烯分析 31
4-3 不同拉曼量測能量強度分析 41
4-4 抗腐蝕實驗 44
結論 48
參考文獻 49

1 孔泳,许娟,秦亚莉,姚超,聚苯胺/膨胀石墨电极的制备及其用于聚合物半电池的研究,常州大学石油化工学院Vol.69,(2011)
2 王维邦 ,耐火材料工藝學, 冶金工業出版社
3 Alexander A. Balandin,Suchismita Ghosh,Wenzhong Bao,Irene Calizo,Desalegne Teweldebrhan,F. Miao,and C. N. Lau," Superior Thermal Conductivity of Single-Layer Graphene"902-907(2008)
4 C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science 321 (5887), 385-388 (2008).
5 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320 (5881), 1308-1308 (2008).
6 B. Z. Jang and A. Zhamu, "Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review," J. Mater. Sci. 43 (15), 5092-5101 (2008).
7 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146 (9-10), 351-355 (2008).
8 F. Schwierz, "Graphene transistors," Nat. Nanotechnol. 5 (7), 487-496 (2010).
9 V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, "Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors," Nano Letters, vol. 9, pp. 1949-1955, May 2009.
10 S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nat. Nanotechnol. 5 (8), 574-578 (2010).
11 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306 (5696), 666-669 (2004).
12 Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, "Open and Closed Edges of Graphene Layers," Phys. Rev. Lett. 102 (1) (2009)
13 Kin Fai Mak, Jie Shan, and Tony F. Heinz. Electronic Structure of Few-Layer Graphene: Experimental Demonstration ofStrong Dependence on Stacking SequencePhys. Rev. Lett. 104, 176404
14 Yasushi Shibuta , James A. Elliott, Interaction between two graphene sheets with a turbostratic orientational relationship, Chemical Physics Letters 512 (2011) 146–150
15 Jih-Shang Hwang, Yu-Hsiang Lin, Jeong-Yuan Hwang,Railing Chang, Imaging layer number and stacking orderthrough formulating Raman fingerprints obtained from hexagonal single crystals of few layer graphene,Nanotechnology 24 (2013) 015702
16 K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, "Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition," Nano Lett. 11 (3), 1106-1110 (2011).
17 TEAM 0.5, Microscopes and Facilities, National Center For Electron Microscopy
18 Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition," Nat. Mater. 10 (6), 443-449 (2011).
19 L. B. Gao, W. C. Ren, J. P. Zhao, L. P. Ma, Z. P. Chen, and H. M. Cheng, "Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition," Appl. Phys. Lett. 97 (18) (2010).
20 J. Hass, W. A. de Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," J. Phys.-Condes. Matter 20 (32) (2008).19 Hua Bai; Chun Li; Gaoquan Shi. Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater. 2011, 23(9), 1089
21 W. Betz1, D. Shollenberger, M. Keeler, High Surface Area Graphitized Mesoporous Carbons, Nanomaterials, Sigma-Aldrich
22 黃淑娟、郭信良、劉易昌、葉裕洲,新碳材時代—從奈米碳管到石墨烯,工業材料雜誌 2011,291 期,093.
23 Sungjin Park; Rodney S. Ruoff.Chemical Methods for The Production of Graphenes. Nature Nanotechnology 2009, 4, 217.
24 Xiaolin Li; Guangyu Zhang; Xuedong Bai; Xiaoming Sun; Xinran Wang;Enge Wang. Highly Conducting Graphene Sheets and Langmuir–Blodgett Films. Nature Nanotechnology 2008, 3, 538
25 Yenny Hernandez; Valeria Nicolosi; Mustafa Lotya; Fiona M. Blighe;Zhenyu Sun; Sukanta De; I. T. McGovern; Brendan Holland; MicheleByrne; Yurii K. Gun’Ko; John J. Boland; Peter Niraj; Georg Duesberg;Satheesh Krishnamurthy; Robbie Goodhue; John Hutchison; Vittorio Scardaci; Andrea C. Ferrari; Jonathan N. Coleman. High-yield Productionof Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotechnology 2008, 3, 563..
26 C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science 312 (5777), 1191-1196 (2006).
27 X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, and H. J. Dai, "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat. Nanotechnol. 3 (9), 538-542 (2008).
28 G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat. Nanotechnol. 3 (5), 270-274 (2008).
29 A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon 45 (10), 2017-2021 (2007).
30 A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova, A. A. Zolotukhin, B. H. Liu, K. C. Chin, and A. T. S. Wee, "Raman scattering characterization of CVD graphite films," Carbon 46 (6), 963-968 (2008).
31 Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett. 93 (11) (2008).
32 A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett. 9 (1), 30-35 (2009).
33 A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, "Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces," Nano Res. 2 (6), 509-516 (2009).
34 X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324 (5932), 1312-1314 (2009).
35 J. Y. Hwang, C. C. Kuo, L. C. Chen, and K. H. Chen, "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density," Nanotechnology 21 (46) (2010).
36 X. S. Li, C. W. Magnuson, A. Venugopal, J. H. An, J. W. Suk, B. Y. Han, M. Borysiak, W. W. Cai, A. Velamakanni, Y. W. Zhu, L. F. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, "Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process," Nano Lett. 10 (11), 4328-4334 (2010).
37 S. Bhaviripudi, X. T. Jia, M. S. Dresselhaus, and J. Kong, "Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst," Nano Lett. 10 (10), 4128-4133 (2010).
38 M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Phys. Chem. Chem. Phys. 9 (11), 1276-1291 (2007).
39 S. Reich and C. Thomsen, "Raman spectroscopy of graphite," Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 362 (1824), 2271-2288 (2004).
40 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep.-Rev. Sec. Phys. Lett. 473 (5-6), 51-87 (2009).
41 P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature 469 (7330), 389-+ (2011).
42 M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S. G. Chou, and M. S. Dresselhaus, "Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems," Small 2 (8-9), 1031-1036 (2006).
43 C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. Van Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and M. A. Pimenta, "Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes," Phys. Rev. B 73 (19) (2006).
44 D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. Sugai, M. Sakata, and H. Shinohara, "Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside," Chem. Phys. Lett. 428 (4-6), 356-360 (2006).
45 L. G. Cancado, A. Reina, J. Kong, and M. S. Dresselhaus, "Geometrical approach for the study of G ' band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite," Phys. Rev. B 77 (24) (2008).
46 J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical resonators from graphene sheets," Science 315 (5811), 490-493 (2007).
47 Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, "Interference enhancement of Raman signal of graphene," Appl. Phys. Lett. 92 (4) (2008).
48 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor," Nat. Nanotechnol. 3 (4), 210-215 (2008).
49 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, "Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening," Acs Nano 2 (11), 2301-2305 (2008).
50 N. Ferralis, R. Maboudian, and C. Carraro, "Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)," Phys. Rev. Lett. 101 (15) (2008).
51 Z. H. Ni, Y. Y. Wang, T. Yu, and Z. X. Shen, "Raman Spectroscopy and Imaging of Graphene," Nano Res. 1 (4), 273-291 (2008).
52 Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen, and A. T. S. Wee, "Raman studies of monolayer graphene: The substrate effect," J. Phys. Chem. C 112 (29), 10637-10640 (2008).
53 A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, "Raman scattering from high-frequency phonons in supported n-graphene layer films," Nano Lett. 6 (12), 2667-2673 (2006).
54 69 X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett. 9 (12), 4359-4363 (2009).
55 Z. H. Ni, Y. Y. Wang, T. Yu, Y. M. You, and Z. X. Shen, "Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy," Phys. Rev. B 77 (23) (2008).
56 S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, "Electronic structure of turbostratic graphene," Phys. Rev. B 81 (16), 165105 (2010).
57 G. T. de Laissardiere, D. Mayou, and L. Magaud, "Localization of Dirac Electrons in Rotated Graphene Bilayers," Nano Lett. 10 (3), 804-808 (2010).
58 Su, aacute, E. rez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, "Flat bands in slightly twisted bilayer graphene: Tight-binding calculations," Phys. Rev. B 82 (12), 121407 (2010).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔