(100.25.42.117) 您好!臺灣時間:2021/04/21 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李賢文
研究生(外文):Hsien-Wen Li
論文名稱:硒化多層金屬薄膜前驅物以合成銅鋅錫硒太陽能電池
論文名稱(外文):Fabrication of Cu2ZnSnSe4 solar cells through selenization of multi-layered metallic precursor film
指導教授:黃智賢黃智賢引用關係
指導教授(外文):Jih-Shang Hwang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:銅鋅錫硒銅鋅錫琉硒太陽能電池硒化
外文關鍵詞:CZTSeCZTSSesolar cellselenization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們成功地利用濺鍍法製備金屬前驅物,再輔以多段式的加熱與硒化處理合成銅鋅錫硒(CZTSe)薄膜,並將之製作成太陽能電池。本研究中,我們在不同CZTSe合成過程中,利用XRD分析、電子掃描式顯微鏡,能量散譜儀(EDS)以及拉曼分析CZTSe的薄膜特性。我們並藉由霍爾量測與吸收光譜探討所合成CZTSe薄膜的電性與光學特性,最後並製備出CZTSe薄膜電池,利用太陽光模擬器測試其能源轉換效率。
我們的實驗結果發現,硒化退火溫度在500度時,有較好的CZTSe薄膜品質。該薄膜為P型半導體材料,且為直接能隙,能隙值為1.05eV,載子濃度約為3.4´ 1017 cm-3,載子遷移率則為 2.11cm2/Vs,電阻率則是8.62 ohm×cm。將此最佳化條件的薄膜製備成電池,所量測之能源轉換效率可達3.64%,短路電流有 32.96 mA/cm2,開路電壓則為0.25V,填充因子有44.23%。這個轉換效率,就我們所知,是利用濺鍍法製備金屬前驅物配合硒化處理合成CZTSe太陽能電池的最佳效率值。
本論文中,也嘗試將所合成的CZTSe硫化成CZTSSe,並做成太陽能電池。初步結果顯示,以硫化氫氣體將CZTSe硫化成CZTSSe會比用硫粉硫化得到較好的CZTSe品質。從CZTSSe的拉曼光譜中,我們發現硫化越長,對應的CZTSSe拉曼強度也越大;使用Vegard's Law配合X光能譜分析(EDS)計算CZTSSe的能隙值,與吸收光譜量測出來的能隙值也大致符合。然而,該薄膜製成太陽能電池後,雖然有得到提高的開路偏壓,其光電流卻明顯地減弱。我們認為比較可能的原因是在CZTSSe的結晶品質仍有待改進。因為電子電洞對產生之後,如果晶體品質太差,複合速度變快,就足以使光電流大幅降低。未來如能品質提高後,便有機會提升其光電流轉換效率。

In this thesis, we have successfully synthesized CuZnSnSe (CZTSe) films by sputtering metal precursor followed by a 4-step heating and selenization process. Solar cell devices based on the synthesized films were also achieved. During the synthesis steps, we employed Raman, XRD, SEM and EDS to analyse the quality of thin films. We discussed the electrical and optical properties of CZTSe through Hall measurement and UV-visible spectroscopy. And, finally, solar cells made with the CZTSe films were completed and characterized under AM 1.5G .
Our result showed, the quality of the CZTSe films reaches the best quality after selenization at 500oC. The films are of P type semiconductors with a 1.05 eV direct band gap. The carrier concentration was around 3.4´ 1017 cm-3 with the mobility being 2.11cm2/Vs. The Resistivity was evaluated to be 8.62 ohm×cm. A solar cell with the best quality CZTSe film exhibits a 3.64% conversion efficiency under AM 1.5G , an open circuit voltage of 250mV, a short circuit current of 32.96mA/cm2, and a fill factor of 44.23%. To our knowledge, this is the best performance CZTSe solar cell ever synthesized through sputtering all metal precursor films followed by selenization.
In the thesis, we also tried to synthesis CuZnSnSSe (CZTSSe) by sulfurization CZTSe. We found that H2S gas was a better sulfurization source than sulphur. From Raman data, the intensities of the CZTSSe peaks were increased with increased sulfurization time. The band gap of the formed CZTSSe estimated using Vegard's Law and energy dispersive spectroscopy (EDS) conforms well to the band gap determined by UV-visible spectroscopy results. The open circuit voltage of the grown CZTSSe was found to increase with the increased sulfurization time, but the short circuit current decreased a lot. The reduced current might be due to the still poor quality of the CZTSSe leading to the increased recombination rates. We hopefully expect the performance of CZTSSe solar cell can be enhanced if the crystal quality of CZTSSe can be improved in the future.

摘要 I
ABSTRACT II
圖目錄 VI
表目錄 VIII
第一章 緒論 1
第二章 文獻探討與基礎理論 3
2.1 太陽能電池簡介 3
2.1.1 太陽能電池工作原理[1, 13, 14] 3
2.1.2 太陽能電池效率轉換 5
2.1.3 太陽能電池種類 7
2.2 太陽能電池各層介紹與原理 9
2.2.1 鈉玻璃基板(Soda-lime glass) 9
2.2.2 鉬金屬背電極(Molydium back contact) 10
2.2.3 主動層 12
2.2.4 硫化鎘緩衝層 14
2.2.5 氧化鋅與氧化銦錫窗層 14
2.2.6 金屬正電極 14
2.3 CU2ZNSNSE4 15
第三章 實驗方法、步驟與實驗設備 22
3.1 實驗流程 22
3.1.1 基板清洗 22
3.1.2 濺鍍銅鋅錫(CZT precursor) 22
3.1.3 前驅物硒化反應 22
3.1.4 緩衝層(硫化鎘) 23
3.1.5 窗層(氧化鋅與氧化銦錫) 23
3.1.6 上電極 23
3.2 實驗設備說明 24
3.2.1 RF射頻濺鍍機 24
3.2.2 硒化爐 24
3.2.3 高溫型爐管 24
3.2.4 化學水浴法 25
3.3 實驗藥品與氣體 25
3.3.1 藥品與靶材 25
3.3.2 氣體 25
3.4 實驗參數 26
3.4.1 RF sputter 金屬前驅物 26
3.4.2 硒化 26
3.4.3 緩衝層 26
3.4.4窗層 26
3.5 分析儀器 27
3.5.1 X光繞射分析儀(X-ray diffractometer , XRD) 27
3.5.2 拉曼光譜儀(Micro-Raman Spectroscopy) 28
3.5.3 掃描電子顯微鏡(scanning electron microscope , SEM)[38] 29
3.5.4 能量散佈分析儀(Energy Dispersive Spectrometer,EDS) 29
3.5.5 擬太陽光測試儀 30
3.5.6 紫外線-可見光光譜儀(UV-Visible Spectroscopy) 32
第四章 結果與討論 33
4.1 硒化法合成CZTSE 33
4.1.1第一階段預熱 34
4.1.2 第二階段硒化反應 37
4.1.3 第三階段加熱(合成CZTSe) 39
4.1.4 第四階段熱退火 42
4.2 薄膜的物理特性 46
4.2.1 薄膜比例 46
4.2.2 電性量測(Hall measurement) 46
4.2.3 光學量測 47
4.3 元件製備 48
4.3.1 硫化鎘 48
4.3.2 氧化鋅與氧化銦錫(窗層) 49
4.4 電池的製備 50
4.5 合成CZTSSE 52
4.5.1 硫蒸氣合成CZTSSe 52
4.5.2 硫化氫合成CZTSSe 55
4.6 CZTSSE 太陽能電池元件效率 57
第五章 結論 59
參考文獻 60

[1] 蔡進, 超高效率太陽電池-從愛因斯坦的光電效應談起, 物理雙月刊, (2005).
[2] H. Wei, W. Guo, Y. Sun, Z. Yang, Y. Zhang, Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals, Materials Letters, 64 (2010) 1424-1426.
[3] G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg, L.M. Peter, Cu2ZnSnSe4thin film solar cells produced by selenisation of magnetron sputtered precursors, Progress in Photovoltaics: Research and Applications, 17 (2009) 315-319.
[4] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki, Alkali incorporation control in Cu(In,Ga)Se[sub 2] thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency, Applied Physics Letters, 93 (2008) 124105.
[5] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19•9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81•2% fill factor, Progress in Photovoltaics: Research and Applications, 16 (2008) 235-239.
[6] M. Lazell, P. O'Brien, D.J. Otway, J.-H. Park, Single source molecular precursors for the deposition of III/VI chalcogenide semiconductors by MOCVD and related techniques, Journal of the Chemical Society, Dalton Transactions, 0 (2000) 4479-4486.
[7] Y. Kamikawa-Shimizu, S. Shimada, M. Watanabe, A. Yamada, K. Sakurai, S. Ishizuka, H. Komaki, K. Matsubara, H. Shibata, H. Tampo, K. Maejima, S. Niki, Effects of Mo back contact thickness on the properties of CIGS solar cells, physica status solidi (a), 206 (2009) 1063-1066.
[8] R. Adhi Wibowo, E. Soo Lee, B. Munir, K. Ho Kim, Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films, physica status solidi (a), 204 (2007) 3373-3379.
[9] G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, S. Raja Vanjari, Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films, Solar Energy Materials and Solar Cells, 94 (2010) 221-226.
[10] T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4Solar Cells, Advanced Energy Materials, 3 (2013) 34-38.
[11] S. López-Marino, M. Placidi, A. Pérez-Tomás, J. Llobet, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, M. Espíndola-Rodríguez, D. Sylla, A. Pérez-Rodríguez, E. Saucedo, Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer, Journal of Materials Chemistry A, 1 (2013) 8338.
[12] I.H.e.a. Hugo de Moor European Roadmap for PV R&;D. European Commission Joint Research Center, (2004).
[13] M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, CZTS based thin film solar cells: a status review, Materials Technology: Advanced Performance Materials, 28 (2013) 98-109.
[14] K. Ottosson, The role of i-ZnO for shunt prevention in Cu(In,Ga)Se2-based solar cells, (2006).
[15] C.F. Adrian Chiril˘Alexander R. Uhl1, Lukas Kranz1, Julian Perrenoud1, Sieghard Seyrling1,, S.N. Rajneesh Verma1, Yaroslav E. Romanyuk1, Gerhard Bilger2 and Ayodhya N. Tiwari1, S.B. a1*†, Fabian Pianezzi1, Patrick Bloesch1, Christina Gretener1,, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer film, NATUREMATERIALS, (2011).
[16] J.H. Yun, K.H. Kim, M.S. Kim, B.T. Ahn, S.J. Ahn, J.C. Lee, K.H. Yoon, Fabrication of CIGS solar cells with a Na-doped Molayer on a Na-free substrate, Thin Solid Films, 515 (2007) 5876-5879.
[17] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films, 517 (2009) 2187-2190.
[18] C.Y. Shi, Y. Sun, Q. He, F.Y. Li, J.C. Zhao, Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers, Solar Energy Materials and Solar Cells, 93 (2009) 654-656.
[19] F.O. Adurodija, M.J. Carter, R. Hill, A novel method of synthesizing p-CuInSe&;lt;sub>2&;lt;/sub> thin films from the stacked elemental layers using a closed graphite box, in: Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 1994, pp. 186-189 vol.181.
[20] T. Wada, N. Kohara, S. Nishiwaki, T. Negami, Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells, Thin Solid Films, 387 (2001) 118-122.
[21] K. Orgassa, H.W. Schock, J.H. Werner, Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, 431–432 (2003) 387-391.
[22] D. Schmid, M. Ruckh, H.W. Schock, A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures, Solar Energy Materials and Solar Cells, 41–42 (1996) 281-294.
[23] R. Friedfeld, R.P. Raffaelle, J.G. Mantovani, Electrodeposition of CuInxGa1−xSe2 thin films, Solar Energy Materials and Solar Cells, 58 (1999) 375-385.
[24] S. Seike, K. Shiosaki, M. Kuramoto, H. Komaki, K. Matsubara, H. Shibata, S. Ishizuka, A. Yamada, S. Niki, Development of high-efficiency CIGS integrated submodules using in-line deposition technology, Solar Energy Materials and Solar Cells, 95 (2011) 254-256.
[25] M.S. Kim, R.B.V. Chalapathy, K.H. Yoon, B.T. Ahn, Grain Growth Enhancement and Ga Distribution of Cu ( In0.7Ga0.3 ) Se2 Film Using Cu2Se Layer on Cu–In–Ga Metal Precursor, Journal of The Electrochemical Society, 157 (2010) B154-B158.
[26] S. Ishizuka, A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara, S. Niki, Large grain Cu(In,Ga)Se2 thin film growth using a Se-radical beam source, Solar Energy Materials and Solar Cells, 93 (2009) 792-796.
[27] M.E. Calixto, P.J. Sebastian, R.N. Bhattacharya, R. Noufi, Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition, Solar Energy Materials and Solar Cells, 59 (1999) 75-84.
[28] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Solar Energy Materials and Solar Cells, 67 (2001) 83-88.
[29] H. Komaki, A. Yamada, K. Sakurai, S. Ishizuka, Y. Kamikawa-Shimizu, K. Matsubara, H. Shibata, S. Niki, CIGS solar cell with CdS buffer layer deposited by ammonia-free process, physica status solidi (a), 206 (2009) 1072-1075.
[30] L. Zhou, Y. Xue, J. Li, Study on ZnS thin films prepared by chemical bath deposition, Journal of Environmental Sciences, 21, Supplement 1 (2009) S76-S79.
[31] I. Camps, J. Coutinho, M. Mir, A.F.d. Cunha, M.J. Rayson, P.R. Briddon, Elastic and optical properties of Cu2ZnSn(SexS1 −x)4alloys: density functional calculations, Semiconductor Science and Technology, 27 (2012) 115001.
[32] J. Krustok, R. Josepson, T. Raadik, M. Danilson, Potential fluctuations in Cu2ZnSnSe4 solar cells studied by temperature dependence of quantum efficiency curves, Physica B: Condensed Matter, 405 (2010) 3186-3189.
[33] C. Persson, Electronic and optical properties of Cu[sub 2]ZnSnS[sub 4] and Cu[sub 2]ZnSnSe[sub 4], Journal of Applied Physics, 107 (2010) 053710-053718.
[34] A. Shavel, J. Arbiol, A. Cabot, Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y, Journal of the American Chemical Society, 132 (2010) 4514-4515.
[35] G.S. Babu, Y.B.K. Kumar, P.U. Bhaskar, V.S. Raja, Effect of post-deposition annealing on the growth of Cu2ZnSnSe4thin films for a solar cell absorber layer, Semiconductor Science and Technology, 23 (2008) 085023.
[36] R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, K.H. Kim, Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets, Journal of Physics and Chemistry of Solids, 68 (2007) 1908-1913.
[37] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency, Energy &; Environmental Science, 5 (2012) 7060.
[38] 羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM.
[39] P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Precursors' order effect on the properties of sulfurized Cu2ZnSnS4thin films, Semiconductor Science and Technology, 24 (2009) 105013.
[40] A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espíndola-Rodríguez, S. López-Marino, M. Placidi, L. Calvo-Barrio, A. Pérez-Rodríguez, E. Saucedo, On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks, Solar Energy Materials and Solar Cells, 112 (2013) 97-105.
[41] R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, H.W. Schock, The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors, Thin Solid Films, 517 (2009) 2465-2468.
[42] J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells, ChemPhysChem, 13 (2012) 3035-3046.
[43] P.M.P. Salomé, P.A. Fernandes, A.F. da Cunha, J.P. Leitão, J. Malaquias, A. Weber, J.C. González, M.I.N. da Silva, Growth pressure dependence of Cu2ZnSnSe4 properties, Solar Energy Materials and Solar Cells, 94 (2010) 2176-2180.
[44] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J.H. Yun, Determination of band gap energy Eg of Cu[sub 2]ZnSnSe[sub 4] thin films: On the discrepancies of reported band gap values, Applied Physics Letters, 97 (2010) 021905.
[45] R. Juškėnas, S. Kanapeckaitė, V. Karpavičienė, Z. Mockus, V. Pakštas, A. Selskienė, R. Giraitis, G. Niaura, A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells, Solar Energy Materials and Solar Cells, 101 (2012) 277-282.
[46] P. Kumar, K. Singh, Structural, optical and Raman studies of template-free solvothermally synthesized ZnSe/ZnSe:Ce3+ nanoparticles, Journal of Luminescence, 130 (2010) 2026-2031.
[47] P. Boolchand, J. Hernandez, STRUCTURAL ORIGIN OF GLASS FORMATION IN GROUP IV DISELENIDES, Phosphorous and Sulfur and the Related Elements, 38 (1988) 305-316.
[48] A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez, S. Siebentritt, Detection of a ZnSe secondary phase in coevaporated Cu[sub 2]ZnSnSe[sub 4] thin films, Applied Physics Letters, 98 (2011) 101907.
[49] S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Advanced materials, 25 (2013) 1522-1539.
[50] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Solar Energy Materials and Solar Cells, 95 (2011) 1421-1436.
[51] J. Lee, J.D. Cohen, W.N. Shafarman, The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements, Thin Solid Films, 480-481 (2005) 336-340.
[52] I.L. Repins, B.J. Stanbery, D.L. Young, S.S. Li, W.K. Metzger, C.L. Perkins, W.N. Shafarman, M.E. Beck, L. Chen, V.K. Kapur, D. Tarrant, M.D. Gonzalez, D.G. Jensen, T.J. Anderson, X. Wang, L.L. Kerr, B. Keyes, S. Asher, A. Delahoy, B. Von Roedern, Comparison of device performance and measured transport parameters in widely-varying Cu(In,Ga) (Se,S) solar cells, Progress in Photovoltaics: Research and Applications, 14 (2006) 25-43.
[53] W.B. R.N. Bhattacharya, M.A. Contreras, R.N. Noufi,J.F. Hiltner and J.R. Sites, 15.4% CuIn1-XGaXSe2-Based Photovoltaic Cells from Solution-Based Precursor Films, (1999).
[54] P.K. Johnson, J.T. Heath, J.D. Cohen, K. Ramanathan, J.R. Sites, A comparative study of defect states in evaporated and selenized CIGS(S) solar cells, Progress in Photovoltaics: Research and Applications, 13 (2005) 579-586.
[55] P. Eliseev, M. Osinski, J. Lee, T. Sugahara, S. Sakai, Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire, Journal of Elec Materi, 29 (2000) 332-341.
[56] Y.-D. Chung, D.-H. Cho, H.-W. Choi, S.-J. Park, J.-H. Kim, B.-J. Ahn, J.-H. Song, K.-S. Lee, J. Kim, Photoreflectance characteristics of chemical-bath-deposited-CdS layer in Cu(In,Ga)Se2 thin-film solar cells, Journal of Vacuum Science &; Technology A: Vacuum, Surfaces, and Films, 30 (2012) 04D116.
[57] C. Guillén, M.A. Martı́nez, C. Maffiotte, J. Herrero, Chemistry of CdS/CuInSe[sub 2] Structures as Controlled by the CdS Deposition Bath, Journal of The Electrochemical Society, 148 (2001) G602.
[58] S.C. Riha, B.A. Parkinson, A.L. Prieto, Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films, J Am Chem Soc, 133 (2011) 15272-15275.
[59] P. Chelvanathan, M.I. Hossain, J. Husna, M. Alghoul, K. Sopian, N. Amin, Effects of Transition Metal Dichalcogenide Molybdenum Disulfide Layer Formation in Copper--Zinc--Tin--Sulfur Solar Cells from Numerical Analysis, Jpn J Appl Phys, 51 (2012) 10NC32-10NC32-14.
[60] http://www.cexci.com
[61]http://chemwiki.ucdavis.edu/Wikitexts/UCD_Chem_124A%3A_Kauzlarich/ChemWiki_Module_Topics/Structure%3A_Zinc_Blend
[62] http://www.nrel.gov/ncpv/

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔