跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許凱傑
論文名稱:製作奈米銀顆粒陣列於軟性基板並應用於表面增強拉曼散射之研究
論文名稱(外文):Fabrication of Ag nanoparticle arrays on Polydimethylsiloxane(PDMS) and its application to Surface Enhanced Raman Scattering
指導教授:江海邦
指導教授(外文):Hai-Pang Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:奈米球微影術表面增強拉曼散射基板聚二甲基矽氧烷
外文關鍵詞:Nanoshpere LithographySERSPDMS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本論文為使用奈米球微影術(Nanoshpere Lithography;NSL)於聚二甲基矽氧烷(Polydimethylsiloxane;PDMS)製作表面增強拉曼散射(Surface Enhanced Raman Scattering;SERS)基板並探討其靈敏度,我們使用直徑1500nm、1000nm、820nm、740nm的聚苯乙烯奈米球塗布在聚二甲基矽氧烷基板上後使用熱蒸鍍法鍍上120nm銀膜後並使用膠帶將奈米球舉離(lift-off),並觀測R6G分子在表面增強拉曼散射(SERS)的表現,我們發現使用膠帶在聚二甲基矽氧烷基板舉離會隨著聚苯乙烯奈米球尺寸越小越產生更多的碎塊跟裂縫,我們將其結構稱為三角碎裂結構,在使用奈米球直徑為740nm激發波長為532nm時表面增強拉曼散射的增強因子(Enhancemaent Factor;EF)最強為6.5×〖10〗^6。
此外我們比較於之前實驗室所製作表面增強拉曼散射基板[1][2],以直徑為430nm之奈米球製做出三角形奈米銀顆粒陣列之表面增強拉曼散射基板、以及製作出直徑為1000nm之銀奈米球殼陣列之表面增強拉曼散射基板三者互相比較在R6G分子上的拉曼散射之表現,最後其三角碎裂結構有較優益的表現。
我們結合使用AutoCAD軟體與COMSOL模擬軟體,模擬出在掃描式電子顯微鏡(Scanning Electron Microscope;SEM)下結構圖,用三維有限空間元素法(3-D Finite Element Method;FEM)模擬增強拉曼散射基板的吸收、透射、反射光譜用以驗證其實驗架構,並將之模擬出碎裂三角形結構的電場分布,探討其增強拉曼散射共振機制,我們發現由於碎裂三角型結構所產生出的小裂縫(Gap)有相當強烈的電場強度,因此我們推算其裂縫為主要能夠增強拉曼散射的原因。

In this thesis, we use nanosphere lithography (NSL) to produced surface-enhanced Raman scattering (SERS) substrate based on polydimethylsiloxane (PDMS) and study its SERS sensitivity. Polystyrene nanospheres with 1500nm, 1000nm, 820nm, 740nm in diameter were drop-coated on PDMS substrate. After deposition of silver film 120nm in thickness by using thermal evaporation, tape was employed to lift-off the nanospheres and R6G molecules were then adsorbed on the substrate to examine its surface-enhanced Raman scattering (SERS) performance. It is found that more pieces of fragments and cracks will be formed with smaller size of polystyrene nanospheres and we call this substrate as triangular fragment structure. Largest SERS enhancement factor of 6.5×〖10〗^6 could be achieved when using nanosphere 740nm in diameter and excited at the wavelength of 532nm.

In addition, we compare SERS sensitivity of this new kind of SERS substrate with those of two kinds of SERS substrate our lab previously developed. One is triangular silver nanoparticle array made from nanosphere 430nm in diameter. Another is silver film over nanosphere (AgFON) with nanosphere 1000nm in diameter. By compared the SERS intensity of R6G molecules adsorbed on these substrate, triangular fragment structure has best performance.

By using AutoCAD and COMSOL simulation software, we use 3D Finite Element Method to simulate the transmission, reflectance and electric field distribution of the substrate from scanning electron microscope (SEM) image of the structure. We found that strong electric field will happen in the gaps between the small cracks of the triangular fragment structure and gap modes between the cracks will possibly be the origins of SERS.

中文摘要 
英文摘要 
目  錄 
圖示目錄 

第一章、簡介 
1-1 表面增強拉曼散射 
1-2 奈米球微影術 
1-3 研究動機

第二章、理論
2-1 拉曼散射歷史背景 
2-2 拉曼散射理論 
2-3 表面增強拉曼散射效應理論 
2-4 奈米球微影術 

第三章、儀器介紹
3-1 共焦拉曼顯微儀 
3-2 掃描式電子顯微鏡
3-3 熱蒸鍍機 
3-4 對流自組裝技術

第四章、實驗方法
4-1 聚二甲基矽氧烷製成 
4-2 增強拉曼散射基板製作(一) 
4-3 增強拉曼散射基板製作(二) 

第五章 實驗結果與討論
5-1、表面增強拉曼散射基板外觀形貌
5-2、拉曼散射量測與增強因子計算
5-3、表面增強拉曼散射基板之間比較
5-4、表面增強拉曼散射機制探討

第六章、結論
第七章、參考文獻
[1] Wen-Chi Lin &;Lu-Shing Liao &; Yi-Hui Chen &; Hung-Chun Chang &; Din Ping Tsai &; Hai-Pang Chiang“Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate”, Plasmonics,6:201–206 (2011)
[2] Wen-Chi Lin, Shi-Hwa Huang, Chang-Long Chen, Chih-Chia Chen, Din Ping Tsai, Hai-Pang Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array”, Appl. Phys. A, 101, 185-189 (2010).
[3] C. Fang, A. Agarwala, K. D. Buddharajua, “DNAdetection using nanostructured SERS substrates with Rhodamine”, Biosensors and Bioelectronics 24, 216-221 (2008).
[4] W. C. Lin, H. C. Jen, C. L. Chen, D. F. Hwang, R. Chang, J.S. Hwang, and H. P. Chiang, “SERS Study of Tetrodotoxin (TTX) by Using Silver Nanoparticle Arrays”, Plasmonics 4, 178-192 (2009).
[5] H. P. Chiang, B. Mou, K. P. Li, P. Chiang, D. Wang, S. J. Lin and W. S. Tse, “FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part I —a density functional theory study of benzo(a)pyrene (BaP) and benzo(e)pyrene (BeP)”, J. Raman Spectrose 32,45-51 (2001).
[6] C. Fang, A. Agarwala, K. D. Buddharajua, “DNAdetection using nanostructured SERS substrates with Rhodamine”, Biosensors and Bioelectronics 24, 216-221 (2008).
[7] Y. C. Chen, R. J. Young, J. V. Macpherson, and N. R.Wilson, “Single-walled carbon nanotube networks decorated with silver nanoparticles : A Novel Graded SERS Substrate”, J. Phys. Chem. C 111, 16167-16173 (2007)
[8] Hua-Zhong Yu, Nan Xia, and Zhong-Fan Liu, “SERS Titration of 4-Mercaptopyridine Self-Assembled Monolayers at Aqueous Buffer/Gold Interfaces”, Anal. Chem. 71, 1354-4358 (1999).
[9] Guotao Duan, Weiping Cai, Yuanyuan Luo, Zhigang Li, and Yue Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect”, Appl. Phys. Lett. 89, 211905(1)-211905(3) (2006).
[10] Alan Campion and Patanjali Kambhampati, “Surface-enhanced Raman scattering”, Chem. Soc. Rev. 27, 241-250 (1998).
[11] A. Campion, J. E. Ivanecky III, M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering”, J. Am. Chem. SOC. 117, 11807-11808 (1995).
[12] H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the Substrate-Temperature Dependence of Surface-Enhanced Raman Scattering”, J. Phys. Chem. B 104, 2348-2350 (2000).
[13] A. C. Sant’Ana, T. C. R. Rocha, P. S. Santos, D. Zanchet and M. L. A. Temperini, “Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine”, J. Raman Spectrosc. 40, 183-190 (2009).
[14] E.C. Le Rua, P.G. Etchegoina, J. Grandb, N. Félidj, J. Aubard, G. Lévib, A. Hohenau, and J.R. Krenn, “Surface enhanced Raman spectroscopy on nanolithography-prepared substrates”, Curr. Appl. Phys. 8, 467-470 (2008).
[15] Ming Lun Tseng, Yao-Wei Huang, Min-Kai Hsiao, HsinWei Huang, Hao Ming Chen, Yu Lim Chen, Cheng Hung Chu, Nien-Nan Chu, You Je He, Chia Min Chang, Wei Chih Lin, Ding-Wei Huang, Hai-Pang Chiang, Ru-Shi Liu, Greg Sun, and Din Ping Tsai, “Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement”, ACS Nano
[16] E. C. Greyson, Y. Babayan, T. W. Odom, ”Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowires”, Adv. Mater 16, 1348-1352 (2004)
[17] X. Wang, C. J. Summers, and Z. L. Wang, ”Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays”, Nano Lett, 4, 423-426 (2004)
[18] M. Albrecht, S. Ganesan, C. T. Rettner, A. Moser, M. E. Best, R. L. White, B. D. Terris, “Patterned perpendicular and longitudinal media: a magnetic recording study”, IEEE Trans. Magn, 39, 2323 (2003)
[19] P. V. Brown, P. Wiltzius, ”Microporous materials: Electrochemically grown photonic crystals”, nature , 402, 603 (1999)
[20] L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, ” Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss”, J. Phys. Chem. B 106, 853-860 (2002)
[21] W. C. Lin, L. S. Liao, Y. H. Chen, H. C. Chang, D. P. Tsai and H. P. Chiang,
” Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate”, Plasmonics. 6, 201-206 (2011)
[22] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles”, J. Phys. Chem. B 104, 10549-10556 (2000).
[23] J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A 13(3), 1553-1558 (1995).
[24] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography Effect of the External Dielectric Medium on the Surface Plasmon, J. Phys. Chem. B 103, 9846-9853 (1999).
[25] J. C. Haynes, and R. P. Van Duyne, “Nanosphere Lithography A Versatile Nanofabrication Tool for Studies of Size-Dependent”, J. Phys. Chem. B 105, 5599-5611 (2001).
[26] L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR”, J. Phys. Chem. B 110, 23982-23986 (2006).
[27] L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss”, J. Phys. Chem. B 106, 853-860 (2002).
[28] J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications“, J. Raman Spectrosc. 34, 26-32 (2003).
[29] Benjamin M. Ross, Liz Y. Wu, Luke P. Lee“Omnidirectional 3D Nanoplasmonic Optical Antenna Array via Soft-Matter Transformation”, Nano Lett. 11, 2590–2595(2011)
[30] 吳國禎,分子振動光譜學概論,(2001)
[31] J. B. Jackson,S. L. Westcott,L. R. Hirsch,J. L. West and N. J. Halasa,
Appl. Phys. Lett.83,2(2003).
[32] M. Kerker,D. S. Wang,H. Chew, Appl. Opt,19,24(1980)
[33] 羅吉宗,戴明鳳,鄭振宗,蘇程裕,吳育民,奈米科技導論,(2003)
[34] 張立德,牟季美,奈米材料和奈米結構,(2001)
[35] 陳明傑,銀微粒之拉曼強化效應,國立中央大學光電科學研究所碩士論文,(1994)
[36] Introductory Raman Spectroscopy , John R. Ferraro , KazuoNakamoto , (1994)
[37] Class Electrodynamics , J. D. Jakson , (1962)
[38] K. Kneipp, M. Moskovits, H. Kneipp, “Surface-Enhanced Raman Scattering” (2006)
[39] Chia-Hauo Hsu, “Monitoring Drugs Entry and Metabolisms in Living Cells by Surface-Enhanced Raman Scattering”, National Yang-Ming University, Institute of Biophotonics Engineering Master Thesis (2005)
[40] M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles”, Appl. Optics 19, 3373-3388 (1980)
[41] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy”, Langmuir 20, 6927-6931(2004).
[42] L. Baia, M. Baia, J. Popp, S. Astilean, “Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR” , J. Phys. Chem. B 110,23982-23986 (2006)
[43] M. Baia, L. Baia, S. Astilean, “Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings”Appl. Phys. Lett. 88, 143121(1)(2006)
[44] Z. Zhu, T. Zhu, Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling”Nanotechnology 15, 357-364 (2004)
[45] Zhou, J., McInnes, S.J., Md Jani, A., Ellis, A.V., &; Voelcker,N.H., “One-step surface modification of poly(dimethylsiloxane) by undecylenic acid”.
Proceedings of SPIE - The International Society for Optical
Engineering,7267(726719) (2008)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top