(3.234.221.162) 您好!臺灣時間:2021/04/14 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊士賢
研究生(外文):Shih-Sian Yang
論文名稱:使用電化學電鍍製作X光光柵干涉儀
論文名稱(外文):Fabrication of X-ray grating interferometer using electrochemical plating
指導教授:胡宇光胡宇光引用關係
指導教授(外文):Yeu-Kuang Hwu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:57
中文關鍵詞:光柵
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
摘要
X射線吸收成像一般是用在各種環境和材料科學的研究。 X射線相位成像技術的發明,在醫療成像,成像可以影響更廣泛的領域。由質量差的常規放射臨床中使用的X射線源是有限的,使用X-射線光柵干涉儀,是實現相位放射學到目前為止最有前景的方法之一。有許多各種不同的光柵干涉儀,它可以被應用到生物成像和醫療成像。我們的目標在這篇論文中X射線源特性沒有嚴格的要求能夠產生X射線相位成像技術被證明的Talbat干涉。
對於X射線透過低吸收物體,然而材料內部的相位差會修改波場,而這種修正,而透過光柵干涉儀後可以產生同樣的相位效果,大大提升那些低對比度結構的能見度。這樣的裝置的關鍵元件是一對精細圖案的光柵,需要較高的精度和準確度。這種光柵結構的間距通常為1-10微米,並具有完整的大面積。
光柵越細能達到更好的分辨率。另一方面,光柵的面積需要適用覆蓋完整的物體的大小。我們成功地在國家最先進的微奈米加工生產光柵,其中包括紫外線光刻技術,濕式化學蝕刻,電鍍和生產專用的無塵室設施。
在這篇論文中,我們報告製造中遇到的各種步驟的解決方案,。包括初始處理的矽基板,在半導體製造過程中光柵製程的問題,。其中,最顯著的成果之一是產生一個均勻導電性的種子層來解決後續電化學電鍍的問題。經過廣泛的測試,成功地製作出光柵效率同步輻射X射線。我們也說明了初步成功的生產出7X7平方厘米的大面積光柵。
Abstract
X-ray absorption imaging is generally used in a variety of environments and materials science research. With the invention of phase contrast imaging, X-ray imaging could impact a much wider field in medical imaging. The use of X-ray grating interferometer, is one of the most promising method to realize phase contrast radiology, which was limited so far by the poor quality of the conventional X-ray source used in clinical radiography. There are many variety of grating interferometer, which can be applied to biological imaging and medical imaging. We target in this thesis X-ray Talbat interferometer which was demonstrated able to generate X-ray phase contrast imaging without stringent requirements of the source characteristics.
For X-ray transmitted through a low absorption object, the phase difference inside the material nevertheless modify the wave field and such modification, after retrieved by the grating interferometer can produce the same effect of phase contrast and greatly enhance the visibility of those low contrast structures. The key component of such apparatus is a pair of finely patterned gratings which require high precision and accuracy. The pitch of such grating structures is typically 1-10 μm and has to be perfect over a large area.
The finer the grating, the better achievable resolution. The area of the grating dictate, on the other hand, the possible application which requires to cover the size of the complete object. We produce successfully such gratings by state-of-the-art micro and nano-fabrication including UV lithography, wet chemical etching, electrochemical plating production in dedicate cleanroom facility.
In this thesis, we report our solution encountered in various steps of our fabrication. Including the initial treatment of the silicon substrate, the problems in the process of grating after the semiconductor manufacturing process. Among them, one of the most significant achievements is to resolve the problem to produce a uniform conductive seed layer for subsequent electrochemical plating. The efficiency of such successfully fabricated grating is extensively tested by synchrotron x-rays. We also demonstrate the preliminary successful production of gratings with an area as large as 7x7 cm2.
Contents
Chapter 1 Introduction .................................................................................................11
Chapter 2 Literature Review........................................................................................12
2-1 Anisotropic KOH Etching...............................................................................12
2-2 Photoresist.......................................................................................................16
2-3 Gold etching with aqua regia ..........................................................................17
2-4 Electroplating gold of absorption grating .......................................................18
2-5 X-ray grating interferometer ...........................................................................21
Chapter 3 Experimental Methods and Setup ...............................................................23
3-1 Motivation of Experiment...............................................................................23
3-2 Manufacture procedure ...................................................................................23
3-3 Manufacture equipment ..................................................................................26
3-4 Silicon substrate processing............................................................................30
3-5 Manufacture of phase grating .........................................................................33
3-6 Manufacture of absorption grating..................................................................35
3-7 Conductive seed layer. ....................................................................................38
3-8 Setup electrochemical plating equipment. ......................................................40
3-9 Electrochemical plating. .................................................................................42
3-10 Setup grating interferometer. ........................................................................44
Chapter 4 Results and Discussion................................................................................47
4-1 The results of the phase grating ......................................................................47
4-2 The results of the absorption grating ..............................................................48
4-3 Large size grating............................................................................................52
4-4 X-ray phase contrast image.............................................................................54
Chapter 5 Conclusion...................................................................................................55
References....................................................................................................................56
References
[1]I. P. S. Virginia Semiconductor, Fredericksburg, VA 22401 (540) 373-2900, FAX (540) 371-0371 and t. v. c. www.virginiasemi.com, "Wet-Chemical Etching and Cleaning of Silicon," 2003.
[2] V. K. Dwivedi, R. Gopal, and S. Ahmad, "Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices," Microelectronics Journal, vol. 31, pp. 405-410, Jun 2000.
[3]www.microchemicals.eu/technical_information, "Wet-Chemical Etching of Silicon," 2012.
[4] SHIPLEY, MICROPOSIT S1800 SERIES PHOTO RESISTS
[5]www.microchemicals.eu/technical_information, "Gold Etching," 2009.
[6] T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, "X-ray phase radiography and tomography of soft tissue using grating interferometry," European Journal of Radiology, vol. 68, pp. S13-S17, Dec 2008.
[7]F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, "Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources," Nature Physics, vol. 2, pp. 258-261, Apr 2006.
[8]A. D. C. D. TimmWeitkamp, Franz Pfeiffer, Marco Stampanoni, Peter Cloetens, and Eric Ziegler, "X-ray phase imaging with a grating interferometer," Optics Express, vol. 13, August 2005.
[9]K. Sato et al.[Characterization of orientation-dependent ethcing properties of single-crystal silicon: effects of KOH concetration (Sensors and Actuators A 64 (1988) 87-93)]
[10] Y. Uenishi, M. Tsugai, and M. Mehregany, "Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon," Journal of Micromechanics and Microengineering, vol. 5, pp. 305-312, Dec 1995.
[11] A. Holke and H. T. Henderson, "Ultra-deep anisotropic etching of (110) silicon," Journal of Micromechanics and Microengineering, vol. 9, pp. 51-57, Mar 1999.
[12]A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, "Phase tomography by X-ray Talbot interferometry for biological imaging," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications &; Review
57
Papers, vol. 45, pp. 5254-5262, Jun 2006.
[13] C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, et al., "Fabrication of diffraction gratings for hard X-ray phase contrast imaging," Microelectronic Engineering, vol. 84, pp. 1172-1177, May-Aug 2007.
[14]C. Kottler, C. David, F. Pfeiffer, and O. Bunk, "A two-directional approach for grating based differential phase contrast imaging using hard x-rays," Optics Express, vol. 15, pp. 1175-1181, Feb 2007.[15]Tomography with grating interferometers at low-brilliance sources
[16]http://www.summit-tech.com.tw/
[17]I-Hsiang Liang, "Fabrication of X-ray diffraction gratings," 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔