跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:左懋華
研究生(外文):Mao-Hua Tsuo
論文名稱:國小四年級數學績優生數學推理能力之探究
論文名稱(外文):A Study on the Mathematics Reasoning Ability of the FourthGraders with High Mathematics Achievement
指導教授:呂玉琴呂玉琴引用關係
指導教授(外文):Yuh-Chyn Leu
口試委員:李源順陳光勳
口試日期:2013-06-13
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:數學暨資訊教育學系(含數學教育碩士班)
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:132
中文關鍵詞:數學績優生數學推理能力數學演繹推理數學歸納推理
外文關鍵詞:students with high achievement on mathematicsmathematic reasoning abilitymathematics deductive reasoningmathematics inductive reasoning
相關次數:
  • 被引用被引用:3
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的在探討國小四年級數學績優生數學推理能力的表現。研究採問卷調查法,以 Leu and Chen(2010) 所發展之「數學推理能力評量工具」為研究工具,該研究工具具內容效度,其 Cronbachα係數為0.6615,評分者信度0.97。研究對象為370位國小四年級數學績優生。主要研究結果如下:
一、數學績優生數學推理能力的表現
1.國小四年級數學績優生,在數學歸納推理的表現顯著優於數學演繹推理的表現;在幾何圖形表徵題的表現顯著優於數字文字表徵題的表現。
2.國小四年級數學績優生在數學演繹推理試題的答題表現:(1)空間推理能力佳,所使用的解題方式十分多元。(2)對於純文字表徵的數學推理題型,其解題表現並不理想。(3)對於需畫輔助線,才能進行數學推理解題的題型,答對率不高。(4)利用通分進行分數的大小比較,仍存有許多迷思概念;反比的概念也很薄弱。
3.國小四年級數學績優生在數學歸納推理試題的答題表現:(1)對於圖形表徵的增長樣式題型,有多元的解題方式,且答對率高。(2)若未採用系統化的方法解計數數量的問題,容易在計數過程中產生遺漏。(3)二階等差數列關係的題型,數學績優生仍不容易找到規律。
二、不同背景變項下數學績優生數學推理能力表現之異同
1.在數學推理的整體表現上,男生的能力顯著優於女生;台北市學生與非台北市學生未存在顯著差異;數學績優生中的數學成就高分組學生顯著優於數學成就低分組學生。
2.不同背景變項下,數學績優生在數學推理能力的交互作用情形:(1)性別與縣市別之間無交互作用。(2)縣市別與數學成就之間無交互作用。(3)性別與數學成就之間的交互作用達到顯著水準。
根據研究結果,提出若干建議供數學教學者及數學推理相關研究者參考。

The purpose of this research is to investigate the mathematical reasoning ability of fourth graders with high achievement on mathematics. The research method is questionnaire and the research tool applied is “The Assessment Tool on Mathematic Reasoning Ability” by Leu and Chen (2010). The coefficient of Cronbach α is 0.6615 and the rater reliability is 0.97. The research subjects are 370 fourth graders with high achievement on mathematics. The major results are as below:
I. The performance of mathematics reasoning ability on students with high mathematics achievement
A. Their performance on mathematics inductive reasoning is significantly better than their mathematics deductive reasoning; their performance on graph representation is significantly better than their performance on text representation.
B. Some characteristics of their performance on mathematics deductive reasoning: (1) good spatial reasoning ability and the solving strategies are diverse; (2) unsatisfactory performance on problems with only text representation; (3) low percentage on problems that require drawing reference line(s); (4) much misconception on comparing fractions by reduction to a common denominator and conception on inverse ratio is feeble.
C. Some characteristics of their performance on mathematics inductive reasoning: (1) diverse solving strategies and high percentage on problems of graph representation with growing pattern; (2) likely to miscount on counting problems if they don’t apply systematical method; (3) unlikely to find patterns for problems on secondary arithmetic sequence.
II. The similarity and difference of the performance on mathematics reasoning ability under different background variables
A. Generally, boys performed significantly better than girls did. There is no significant difference between students from Taipei City and students from other cities. Among students with high achievement on mathematics, students with high scores performed significantly better than students with low scores.
B. Regarding to different background variables, their relationships are as follows: (1) there is no interaction between gender and city; (2) there is no interaction between city and mathematic achievement; (3) there is a significant interaction between gender and mathematic achievement.

第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與待答問題 4
第三節 名詞釋義 4
第四節 研究範圍與限制 6
第二章 文獻探討 7
第一節 數學推理能力 7
第二節 數學推理之相關研究 21
第三章 研究方法 39
第一節 研究架構 39
第二節 研究對象 40
第三節 研究工具 42
第四節 研究程序 43
第五節 資料處理 45
第四章 結果與討論 53
第一節 數學績優生在數學推理能力之表現 53
第二節 不同背景變項下數學績優生數學推理能力表現之異同 98
第五章 結論與建議 113
第一節 結論 113
第二節 建議 117
參考文獻 121
中文部分 121
西文部分 126
附錄 129
試題使用及修改授權書 129

一、中文部分
呂玉琴、侯成龍(2012)。國小四年級數學資優生數學成就測驗鑑定工具之編製。東臺灣特殊教育學報,14,303-326。
呂玉琴、陳振銘(2010)。數學推理能力評量工具,未發表。
吳昭容、嚴雅筑(2008)。樣式結構與回饋對幼兒發現重複樣式的影響。科學教育學刊,16(3),303-324。
吳庭瑜(2000)。電腦輔助系統角色與解釋對歸納推理技能的影響。國立交通大學工業工程與管理系碩士論文。
李丹(1989)。兒童發展。臺北:五南。
李源順、王美娟、蘇意雯和陳怡仲(2009)。臺灣學生在TIMSS的數學表現及其啟示。研習資訊,26(6),61-72。
何國賓(2011)。國小學生圖形推理能力、社經背景與學業成就之相關研究(未出版之碩士論文)。國立臺北教育大學社會與區域發展學系,臺北市。
林玉珠(2009)。國小空間能力優異學生空間方位之解題歷程(未出版之碩士論文)。國立臺北教育大學數學教育研究所,臺北。
林軍治(1985)。場地獨立/依賴、城鄉背景、性別及社經地位與國中生幾何推理能力關係之研究。花蓮師院學報,16,2-16。
林崇德(1995)。小學生心理學。五南,臺北市。
林清山 (1977)。數學課程設計和數學教學的理論基礎。科學教育月刊,11,10-20。
林碧珍、蔡文煥(2003)。我國國小四年級學生在國際教育成就2003試測的數學成就表現。九十二學年度師範教育學術論文發表會論文集。國立台南師院編印。
林寶貴、吳純純、林美秀(1995)。臺灣區兒童普通推理能力及其相關因素之研究。特殊教育研究學刊,11,1-18。
洪文東(1997)。思考的意義與性質。屏師科學教育,(6),2-10。
洪文東(2000)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
洪志峰(2007)。不同題目表徵型式對國小五、六年級學生多步驟應用問題解題表現之研究。國立臺北教育大學數學教育研究所碩士論文。
洪麗晴(1996)。原住民與非原住民國小學生推理表現及其策略使用之差異研究。新竹師範學院初等教育研究所碩士論文。
孫玉鳳(2011)。國小四年級數學績優生數學思維靈活性之探討(未出版之碩士論文)。國立臺北教育大學理學院數學教育研究所,臺北。
馬秀蘭(2007)。學生思考過程之探究-以實務推理為例。科學教育學刊,15(4),387-416。
馬秀蘭(2008)。國小高年級學生解樣式題之代數思考:以線性圖形樣式題為例。科學教育研究與發展季刊,50,35-52。
涂金堂(1999)。簡介「國民中小學學生推理能力測驗」及其應用。學生輔導通訊,63,頁24-33。
唐慧娟(2003)。國小高年級學生解題與推理思考能力相關因素之個案研究。屏東師範學院數理教育學系碩士論文。
教育部(1993)。國民小學課程標準。臺北:教育部。
教育部(2008)。國民中小學九年一貫課程綱要。臺北:教育部。
郭靜芳(1997)。國小資優生後設認知與推理思考之研究(未出版之碩士論文)。嘉義師院國教所,嘉義市。
張秀蓁(1996)。國民中小學學生推理能力測驗編製之研究。彰化師範大學特殊教育學系碩士論文。
張春興(1992)。心理學。臺北:東華。
張春興(1997)。現代心理學。臺北:東華。
張春興(2007)。教育心理學—三化取向的理論與實踐。臺北:東華。
張純芳(2010)。胚騰推理與數學學習態度對國中基測數學成績之相關性硏究(未出版之碩士論文)。中原大學教育研究所,桃園縣。
張筱珊(2004)。國小學生演繹邏輯推理能力之研究。屏東師範學院數理教育研究所碩士論文,屏東縣。
張景媛、陳荻卿(2003)。促進推理思考的認知策略。課程與教學季刊,6(2)79-108。
陳李綢(1992)。認知發展與輔導。臺北:心理。
陳玫如(2012)。國小高年級學生代數推理能力之研究。國立臺中教育大學數學教育學系碩士論文。
陳俐臻(2010)。國小六年級學生演繹推理能力測驗工具之發展(未出版之碩士論文)。國立臺北教育大學理學院自然科學教育學系,臺北市。
陳振銘(2010)。國小六年級數學資優生與ㄧ般生在學校導向數學性向測驗上的表現之比較(未出版之碩士論文)。國立臺北教育大學理學院自然科學教育學系,臺北市。
陳滿(2003)。國小五年級學生數學推理能力之研究~以BBS為工具。台中師範學院數學教育學系在職進修教學碩士學位班論文。
許瑋芷(2008)。數學表徵及數學自我效能對國小五年級學生樣式推理學習成效之影響(未出版之碩士論文)。國立台灣師範大學資訊教育研究所,臺北。
黃子千(2006)。國小學生樣式推理與數學創造力之研究-以國小六年級學生為例(未出版之碩士論文)。國立臺中教育大學數學教育學系。
黃秀瑄、林瑞欽(1991)。認知心理學。臺北:師大。
黃幸美(1995)。兒童在數學問題問題上的類比推理思考之研究。國立政治大學博士論文。
黃敏晃(2000)。規律的尋求。臺北:心理。
黃湘武、劉謹輔、陳忠志、杜鴻模、江新合(1985)。國中學生質量守恆、重量守恆、外體積觀念與比例推理能力之抽樣調查與研究。中等教育,1,44-65。
黃毅英(1992)。九十年代的學校數學教育。數學傳播,16(4),79-87。
趙旼冠、楊憲明(2006)。數學障礙學生數學概念理解、數學推理能力與數學解題表現之關係分析研究。特殊教育與復健學報,16,73-97。
趙振威(2001)。怎樣學好數學。新竹:凡異。
趙曉燕(2010)。數形規律教學對國小六年級學生代數學習影響之研究(未出版之碩士論文)。國立臺北教育大學理學院數學教育研究所,臺北。
寧連華(2003)。數學推理的本質和功能及其能力培養。數學教育學報,12(3),42-45。
劉春纓(2003)。國小高年級學生類比推理能力及其影響因素之研究。國立屏東師範學院數理教育研究所教學碩士論文。
劉曉玫、楊裕前(2002)。關於推理能力問題的幾點思考。數學教育學報,11(2),54-56。
蔡明珠(2010)。影響國小學生演繹推理能力相關因素之研究-以臺北縣市六年級為例(未出版之碩士論文)。臺北市立教育大學,臺北市。
鄭佳昇(2003)。國小六年級學生樣式推理之研究-以網際網路為媒介。台中師範學院數學教育學系在職進修教學碩士學位班論文。
謝佳鈺(2008)。國小學生邏輯推理能力養成之研究。國立臺北教育大學數學教育研究所,臺北市。
謝淡宜(1998)。小學五年級數學資優生和普通生數學解題思考歷程之比較。臺南師院學報,31,225-268。
簡真真(1982)。國小資優實驗班學生創造力及問題解決能力發展之研究。國立高雄師範學院教育研究所碩士論文。
羅育敏(2009)。我國學生在邏輯演繹推理問題之表現。國立新竹教育大學應用數學系碩士論文。
Copley, J. V.(2003)。幼兒數學教材教法(何雪芳,陳彥文譯)。台北:華騰。(原著出版於1998年)
G. Polya(1996)。數學與猜想。(李心燦、王日爽、李志堯譯)。臺北市:九章。(原著出版於1954)

二、西文部分
Angell, R. B. (1964). Reasoning and Logic.New York:Meredith Publishing Company.
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school.. Reston, VA: National Council of Teachers of Mathematics.
Baroody, Arthur J. (1993). Problem solving, reasoning, and communicating, K-8: helping children think mathematically. New York: Merrill.
Bitner-Corvin,B.L.(1988).Is the GALT a reliable instrument for measuring the logical thinking alilities of students in grades six through twelve? (ERIC Document Reprodution Services No.ED293717).
Brody, Baruch A. (1973). Logic: theoretical and applied. Englewood Cliffs. N.J.: Prentice-Hall.
Cassell.Threlfall, J. (1999). Repeating patterns in the primary years. In A. Orton (ed.), Pattern in the Teaching and Learning of Mathematics(pp. 18-30). Cassell, London.
DeGurire,L.J.(1985). The structure of mathematical abilities: The view factor analysis. (ERIC Document Reprodution Services No.ED260902).
Gross,J.(1993).Special education needs in the prim ar y school: Apractica l guide. Buckingham: Open University Press.
Hargreaves, M. , Threlfall, J. ,Frobisher, L. & Shorrocks-Taylor, D. (1999). Children’s Strategies with Linear and Quadratic equences.Pattern in the Teaching and Learning of Mathematics,67-83.
Hoon, S . S .,& Charles , B .(1994). Adolescent thinking : The ability to imagine possibilities. (ERIC Document Reprodution Services No.ED381234).
Johan, L.(2000).Mathematical reasoning in task solving. Educational studies in mathematical, 41, 165-190.
Kline,P.(1994). Intellience: The psychometric view. London:Routledge.
Krulik, S. & Rudnick, J. A. (1993). Reasoning and problem solving: A handbook for elementary school teachers. Boston:Allyn and Bason
Krutetskii,V. A. (1976), The psychology of mathematical abilities in school children.Chicago:The University of Chicago Press..
Linda, P. (1999). Supporting mathematical development in the early years. Philadelphia :Open University Press.
Ma, H. L. (2007). The potential of patterning activities to generalization. Proceeding of the 31st Conference of the International Group for the Psychology of Mathematics Education, 33,225-232. Seoul: PME.
Malloy, C. E.(1996). African-American eighth grade student’s mathematics problem solving:characteristics , strategies , and success. Dissertation Abstracts, AAC9538448.
Orten, J. ,Orten, A. & Roper, T. (1999). Pictorial and Practical Contexts and the Perception of Pattern.Pattern in the Teaching and Learning of Mathematics,121-136.
Owen, A. (1995). In search of the unknown: A review of primary algebra. In J. Anghileri (Ed.), Children’s mathematical thinking in the primary years: Perspectives on children’s learning. London.
Steen, L. A. (1988). The Science of patterns. Science, 240 (4852), 611-616.
The National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
Zazkis, R., & Liljedahl, P. (2002). Generalization of Patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402.
Zucker, A. A. & Esty, E. T.(1993). Promoying discourse in mathematics classrooms using a new vedio series for Middle Schools.(ERIC Document Reproduction Service No.ED367 534)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳昭容、嚴雅筑(2008)。樣式結構與回饋對幼兒發現重複樣式的影響。科學教育學刊,16(3),303-324。
2. 林軍治(1985)。場地獨立/依賴、城鄉背景、性別及社經地位與國中生幾何推理能力關係之研究。花蓮師院學報,16,2-16。
3. 林清山 (1977)。數學課程設計和數學教學的理論基礎。科學教育月刊,11,10-20。
4. 林碧珍、蔡文煥(2003)。我國國小四年級學生在國際教育成就2003試測的數學成就表現。九十二學年度師範教育學術論文發表會論文集。國立台南師院編印。
5. 林寶貴、吳純純、林美秀(1995)。臺灣區兒童普通推理能力及其相關因素之研究。特殊教育研究學刊,11,1-18。
6. 洪文東(1997)。思考的意義與性質。屏師科學教育,(6),2-10。
7. 洪文東(2000)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
8. 洪麗晴(1996)。原住民與非原住民國小學生推理表現及其策略使用之差異研究。新竹師範學院初等教育研究所碩士論文。
9. 涂金堂(1999)。簡介「國民中小學學生推理能力測驗」及其應用。學生輔導通訊,63,頁24-33。
10. 黃湘武、劉謹輔、陳忠志、杜鴻模、江新合(1985)。國中學生質量守恆、重量守恆、外體積觀念與比例推理能力之抽樣調查與研究。中等教育,1,44-65。
11. 趙旼冠、楊憲明(2006)。數學障礙學生數學概念理解、數學推理能力與數學解題表現之關係分析研究。特殊教育與復健學報,16,73-97。
12. 謝淡宜(1998)。小學五年級數學資優生和普通生數學解題思考歷程之比較。臺南師院學報,31,225-268。
13. 簡真真(1982)。國小資優實驗班學生創造力及問題解決能力發展之研究。國立高雄師範學院教育研究所碩士論文。