(3.236.214.19) 您好!臺灣時間:2021/05/09 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黎彥呈
研究生(外文):Li, Yan-Cheng
論文名稱:雙空時區塊碼之軟式輸出球面解碼
論文名稱(外文):Soft-Output Sphere Detection of Double Space-Time Block Codes
指導教授:白宏達
指導教授(外文):Pai, Hung-Ta
口試委員:白宏達魏存毅江振宇
口試委員(外文):Pai, Hung-TaWei Chun-YiJiang, Zhen-Yu
口試日期:2013-01-30
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:33
中文關鍵詞:快速最大似然偵測法雙空時區塊碼單一樹狀搜索多重輸入多重輸出軟式輸出演算法
外文關鍵詞:A fast ML detectiondouble space-time block codessingle-tree searchmultiple-input multiple-outputsoft-output algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
最近在雙空時區塊碼中,提出一個快速最大似然偵測演算法具有低複雜地計算。然而,它僅提供硬式輸出。在這篇論文中,我們把快速最大似然偵測演算法延伸到提供軟式輸出,這樣在雙空時區塊碼獲得接近最佳性能。這個延伸是利用單一樹狀搜索法的技術,它被開發用於多輸入多輸出的通訊系統中。模擬結果顯示提出的軟式輸出演算法優於硬式輸出約3 dB,而其複雜度低於暴力演算法61.15%。
A fast maximum-likelihood (ML) detection algorithm with low computational complexity was proposed for double space-time block codes (DSTBCs) recently. However, it only provides hard outputs. In this thesis, we extend the fast ML detection algorithm to offer soft outputs such that near-optimum performance of the DSTBC is obtained. This extension is done by using the single-tree search (STS) technique which was developed for spatial multiplexing in multiple-input multiple-output communication systems. Simulation results show that the proposed soft-output algorithm outperforms the hard-output one approximately by 3 dB while its complexity is lower than the brute-force algorithm around 61.15%.
Acknowledgements i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2 Problem Statement and Previous Work 3
2.1 System Model 3
2.2 New Form of the ML Metric 4
2.3 Dual Double-Layer Sphere Decoding 6
2.3.1 Dual Outer-Layer Sphere Decoding 7
2.3.2 Dual Inner-Layer Sphere Decoding 11
2.3.3 Single-Symbol ML Detection 12
2.4 Max-log Soft-Output Computation 14
2.5 Single Tree Search 15
2.6 LLR Clipping 16
2.7 Soft Decision For MIMO Systems 17
2.7.1 LLR for Linear Detection-Based ZF MIMO System 17
Chapter 3 Proposed Scheme and Simulation Results 21
3.1 Proposed Method 21
3.2 The simulation results 23
Chapter 4 Conclusions 29
REFERENCE 30

[1]L. A. Dalton and C. N. A Georghiades, “A four transmit antenna, quasi-orthogonal space-time block code with full diversity and rate,” in Proc. 40th Allerton Conference on Commun., Control, and Computing, Allerton House, IL, Oct. 2002, pp. 2372–2388.
[2]I.-M. Kim, Y. O. ParK, and Y.-J. Bang, “Fast ML detection for quasiorthogonal STBCs of rate 2 in under-determined systems," IEEE Trans. Commun., vol. 56, pp. 1249-1257, Aug. 2008.
[3]H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans.Commun., vol. 49, pp. 1–4, Jan. 2001.
[4]I.-M. Kim and V. Tarokh, “Variable rate space-time block codes in M-ary PSK systems,” IEEE J. Select. Areas Commun., vol. 21, pp.362–373, Apr. 2003.
[5]I.-M. Kim, “Space-time power optimization of variable rate spacetime block codes based on successive interference cancellation,” IEEE Trans. Commun., vol. 52, pp. 1204–1213, July 2004.
[6]M. S. Yee, “Max-Log-Map sphere decoder,” in Proc. IEEE ICASSP 2005, vol. 3, Mar. 2005, pp. 1013–1016.
[7]Part 16: air interface for fixed and mobile broadband wireless acess systems, IEEE Std. 802.16e, 2005.
[8]M. Pohst, “On the computation of lattice vectors of minimal length, sucessive minima and reduced basis with applications,” SIGSAM Bull., vol. 15, pp. 37–44, Feb. 1981.
[9]C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved pratical algorithms and solving subset sum problems,” Math. Program., vol. 66, pp. 181–191, Sept. 1994.
[10]U. Fincke and M. Phost, “Improved methods for calculating vectors of short length in a lattice, including compleixty analysis,” Math. Computat., vol. 44, pp. 463–471, Apr. 1985.
[11]A. Peng, I.-M. Kim, and S. Yousefi, “Low-complexity sphere decoding algorithm for quasi-orthogonal space-time block codes,” IEEE Trans. Commun., vol. 54, pp. 377–382, Mar. 2006.
[12]M. O. Damen, K. Abed-Meraim, and J. C. Belfiore, “Generalized sphere decoder for asymmetrical space-time communication architecture,” Electron. Lett., vol. 36, pp. 166–167, Jan. 2000.
[13]P. Dayal and M. K. Varanasi, “A fast generalized sphere decoder for optimum decoding of under-determined MIMO systems,” in Proc. 41st Allerton Conferece on Commun., Control, and Computing, Monticello, IL, Oct. 2003, pp. 1216–1225.
[14]Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere decoding in MIMO systems,” IEEE Signal Processing Lett., vol. 12, pp. 41–44, Jan. 2005.
[15]B. Hassibi and H. Vikalo, “On the Sphere-Decoding Algorithm I. Expected Complexity,” IEEE Trans. on Signal Proc., VOL. 53, NO. 8, Aug. 2005.
[16]B. Vucetic and J. Yuan, Turbo Codes Principles and Applications. Kluwer Academic, 2000.
[17]Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Commun. with MATLAB. John Wiley & Sons, 2010.
[18]B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. on Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.
[19]J. Jaldén and B. Ottersten, “Parallel implementation of a soft output sphere decoder,” in Proc. Asilomar Conference on Signals, Systems and Computers, Nov. 2005, pp. 581–585.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔