跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林有恒
研究生(外文):You-Heng Lin
論文名稱:有機高分子光伏載體-受體系統的形態特性研究
論文名稱(外文):Investigation of Morphological Characteristics of Photovoltaic Polymer Donor-Acceptor Systems
指導教授:吳忠幟
口試委員:林皓武
口試日期:2013-07-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:81
中文關鍵詞:低掠角X-光散射
外文關鍵詞:GIXS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由高分子與富勒稀衍生物所製作的太陽能電池系統,已經被視為最有潛力的再生替代能源選項。在許多高分子與富勒稀的材料組合中,聚噻吩(P3HT)和苯基碳61丁酸甲酯(PCBM)是目前最被廣泛研究的題材。然而,最近的研究報導指出一個新的受體材料:茚-碳60雙加成物(ICBA),用來取代PCBM作為P3HT系統的新受體材料,其較高的最低未填滿軌域能階(LUMO),使得太陽能電池的效能獲得明顯的提昇。然而,除了能階的影響以外,深入的形態討論對瞭解ICBA和PCBM的元件效率的差異也會有幫助。
在這篇論文中,我們比較這兩個載體-受體混合系統:P3HT/PCBM和P3HT/ICBA的光譜以及形態特性,利用光學顯微鏡以及低掠角X光散射技術,我們發現不管是單一材料薄膜,或是混合載體-受體的薄膜,PCBM相對ICBA容易形成較大且規則的聚集或是結晶結構,和PCBM相較下,ICBA也相當程度的破壞P3HT的規則性排列。由於P3HT/PCBM系統可以形成較多、較大的規則相分離區域,P3HT/PCBM薄膜在高濃度PCBM摻雜的情況下,可以觀察到明顯的光學散射特性,然而這樣的特性在P3HT/ICBA的混合系統上並不明顯!這樣的結果表示,P3HT/ICBA的元件效率提昇並非來自主動層的形態品質提昇,而是其他的原因在元件效率提昇上產生更重要的影響

Solar cell technology based on polymer/fullerene composites are continuously gaining interest as a potential source of renewable energy. Among the composites, poly(3-hyxelthiophene) (P3HT) and [6,6]-phenyel-C61 butyric acid methyl ester (PCBM) are the most widely studied D-A combination. Recently, a new C60-based acceptor material indene-C60 bisadduct (ICBA) replacing PCBM as an acceptor in the P3HT/fullerene system is repoted to substantially improve the conversion efficiency of the solar cells owing to the higher LUMO level. However, the detailed morphological properties of the donor-acceptor composites would also be essential in understanding the difference in performance between the P3HT/PCBM system and the relatively new P3HT/ICBA system
We report a comparative study on spectral and morphological properties of two blend systems for polymer solar cells: the donor material P3HT in combination with the acceptor material of either PCBM or ICBA that was reported to enhance efficiencies of polymer solar cells. Optical microscopy and grazing incidence X-ray scattering reveal the stronger tendency of PCBM to from larger and more ordered domains/grains than ICBA either in pure or blend films. Compared to PCBM, the presence of ICBA also substantially perturbs the organization and longer-range ordering of P3HT in increasing the ICBA ratio in blends. With larger and more ordered phase-separated domains, the P3HT/PCBM blend films exhibit significant optical scattering at higher PCBM ratios. Yet, such optical scattering is not significant for P3HT/ICBA blends (even with high ICBA ratios). Overall, results here suggest the reported higher efficiencies of P3HT/ICBA solar cells (vs. P3HT/PCBM cells) cannot be attributed to larger and/or more ordered phase-separated donor-acceptor domains and other characteristics play more important roles in this case.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Overview of renewable energy 1
1.2 Overview of polymer solar cells 2
1.3 Working principle of polymer solar cells 4
1.4 Effect of morphology on the device performance 9
1.5 Ways to control morphology 11
1.5.1 Thermal and solvent annealing 11
1.5.2 Solution concentration and film thickness 12
1.5.3 Molecular weight 13
1.6 Motivation and Thesis Organization 15
1.7 Reference 15
Chapter 2 Properties of Neat P3HT, PCBM and ICBA Films 26
2.1 Introductin………………………………………………………………..26
2.2 Experiments 26
2.2.1 Materials and their film preparation 26
2.2.2 Characterization of the thin films by optical methods 27
2.2.3 Characterization of film morphology by Grazing Incidence X-ray Scattering (GIXS) 27
2.3 Results and discussions 30
2.3.1 UV-Vis spectroscopy of P3HT, PCBM, and ICBA films 30
2.3.2 GIXS analysis of P3HT films 31
2.3.3 GIXS analysis of PCBM 33
2.3.4 GIXS analysis of ICBA films 35
2.4 Summary 36
2.5 References 37
Chapter 3 Comparative Study of the Spectral and Morphological Properties of Blends of P3HT with PCBM and ICBA 52
3.1 Introduction 52
3.2 Experiments 53
3.2.1 Preparation of the blend thin films 53
3.2.2 Characterization of the polymer/fullerene films 54
3.3 Result and discussion 56
3.3.1 Spectral properties and optical microscopy of pure and blend P3HT/Fullerene films 56
3.3.2 GIXS analyses of pure and blend P3HT/Fullerene films 59
3.4 Summary 62
3.5 References 63
Chapter 4 Summary 80

Chapter 1
[1] D. M. Chapin, C. S. Fuller, and G. L. Pearson. A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics 25.5 (1954) 676-677.
[2] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells, Science, 285 (1999) 692-698.
[3] M.A. Green, Third generation photovoltaics: advanced solar energy conversion, Springer, 2003.
[4] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
[5] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films, 511 (2006) 654-662.
[6] A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation, Academic Press, 2012.
[7] R. Gaudiana, C. Brabec, Organic materials - Fantastic plastic, Nature Photonics, 2 (2008) 287-289.
[8] C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183-185.
[9] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258 (1992) 1474-1476.
[10] N. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. Heeger, G. Stucky, F. Wudl, Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Applied Physics Letters, 62 (1993) 585-587.
[11] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Synthetic Metals, 59 (1993) 333-352.
[12] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270 (1995) 1789-1790.
[13] J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. Friend, S. Moratti, A. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376 (1995) 498-500.
[14] M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, Small-molecule solar cells-status and perspectives, Nanotechnology, 19 (2008) 424001.
[15] M.T. Dang, L. Hirsch, G. Wantz, P3HT: PCBM, best seller in polymer photovoltaic research, Advanced Materials, 23 (2011) 3597-3602.
[16] R. Osterbacka, C. An, X. Jiang, Z. Vardeny, Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals, Science, 287 (2000) 839-842.
[17] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing” effect in polymer solar cells based on poly (3‐hexylthiophene) and methanofullerenes, Advanced Functional Materials, 17 (2007) 1636-1644.
[18] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells, Journal of the American Chemical Society, 130 (2008) 732-742.
[19] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters, 78 (2001) 841-843.
[20] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868.
[21] M. Lenes, G.J.A. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, P.W. Blom, Fullerene bisadducts for enhanced open‐circuit voltages and efficiencies in polymer solar cells, Advanced Materials, 20 (2008) 2116-2119.
[22] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100 percent, Nature Photonics, 3 (2009) 297-302.
[23] N. Blouin, A. Michaud, M. Leclerc, A low‐bandgap poly (2, 7‐carbazole) derivative for use in high‐performance solar cells, Advanced Materials, 19 (2007) 2295-2300.
[24] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics, 3 (2009) 649-653.
[25] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties, Journal of the American Chemical Society, 131 (2009) 7792-7799.
[26] T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R.m. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Bulk heterojunction solar cells using thieno [3, 4-c] pyrrole-4, 6-dione and dithieno [3, 2-b: 2′, 3′-d] silole copolymer with a power conversion efficiency of 7.3%, Journal of the American Chemical Society, 133 (2011) 4250-4253.
[27] H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency, Angewandte Chemie International Edition, 123 (2011) 3051-3054.
[28] S.C. Price, A.C. Stuart, L. Yang, H. Zhou, W. You, Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer− fullerene solar cells, Journal of the American Chemical Society, 133 (2011) 4625-4631.
[29] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced Materials, 18 (2006) 789-794.
[30] Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, Y. Cao, Fluorene-based low band-gap copolymers for high performance photovoltaic devices, Applied Physics Letters, 84 (2004) 1653-1655.
[31] L. Huo, J. Hou, S. Zhang, H.Y. Chen, Y. Yang, A Polybenzo [1, 2‐b: 4, 5‐b′] dithiophene derivative with deep HOMO level and its application in high‐performance polymer solar cells, Angewandte Chemie International Edition, 49 (2010) 1500-1503.
[32] M. De Jong, L. Van Ijzendoorn, M. De Voigt, Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes, Applied Physics Letters, 77 (2000) 2255-2257.
[33] F.-J.M. Zu Heringdorf, M. Reuter, R. Tromp, Growth dynamics of pentacene thin films, Nature, 412 (2001) 517-520.
[34] Y.-H. Lin, Y.-T. Tsai, C.-C. Wu, C.-H. Tsai, C.-H. Chiang, H.-F. Hsu, J.-J. Lee, C.-Y. Cheng, Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA, Organic Electronics, 13 (2012) 2333-2341.
[35] H. Yang, T.J. Shin, L. Yang, K. Cho, C.Y. Ryu, Z. Bao, Effect of mesoscale crystalline structure on the field‐effect mobility of regioregular poly (3‐hexyl thiophene) in thin‐film transistors, Advanced Functional Materials, 15 (2005) 671-676.
[36] C.H. Woo, B.C. Thompson, B.J. Kim, M.F. Toney, J.M. Frechet, The influence of poly (3-hexylthiophene) regioregularity on fullerene-composite solar cell performance, Journal of the American chemical society, 130 (2008) 16324-16329.
[37] L. Li, H. Tang, H. Wu, G. Lu, X. Yang, Effects of fullerene solubility on the crystallization of poly (3-hexylthiophene) and performance of photovoltaic devices, Organic Electronics, 10 (2009) 1334-1344.
[38] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D. Bradley, J. Nelson, Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends, Nature Materials, 7 (2008) 158-164.
[39] Z. Xu, L.M. Chen, G. Yang, C.H. Huang, J. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, Vertical Phase Separation in Poly (3‐hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells, Advanced Functional Materials, 19 (2009) 1227-1234.
[40] L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices, Journal of Materials Chemistry, 20 (2010) 2575-2598.
[41] E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, Z. Bao, Effects of thermal annealing upon the morphology of polymer–fullerene blends, Advanced Functional Materials, 20 (2010) 3519-3529.
[42] D. Chirvase, J. Parisi, J. Hummelen, V. Dyakonov, Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites, Nanotechnology, 15 (2004) 1317.
[43] R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M. Frechet, M.F. Toney, Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules, 38 (2005) 3312-3319

Chapter 2
[1] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J.M. Frechet, M.F. Toney, Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules, 38 (2005) 3312-3319
[2] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Advanced Functional Materials, 15 (2005) 1193-1196.
[3] M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV: PCBM ‘plastic’solar cells, Chemical Communications, (2003) 2116-2118.
[4] P. Dutta, Grazing incidence X-ray diffraction. Current Science 78 (2000) 1478-1483.
[5] S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, J.E. Macdonald, Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions, Macromolecules, 44 (2011) 2725-2734.
[6] G. Zhao, Y. He, and Y. Li. 6.5% Efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization, Advanced Materials 22.39 (2010): 4355-4358.
[7] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, 15 (2005) 1617-1622.
[8] X. Yang, A. Alexeev, M.A. Michels, J. Loos, Effect of spatial confinement on the morphology evolution of thin poly (p-phenylenevinylene)/methanofullerene composite films, Macromolecules, 38 (2005) 4289-4295.

Chapter 3
[1] H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry, 16 (2006) 45-61.
[2] J. Peet, M.L. Senatore, A.J. Heeger, G.C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Advanced Materials, 21 (2009) 1521-1527.
[3] C.J. Brabec, J.R. Durrant, Solution-processed organic solar cells, MRS Bulletin, 33 (2008) 670-675.
[4] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258 (1992) 1474-1476.
[5] V. Shrotriya, E.H.-E. Wu, G. Li, Y. Yao, Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Applied Physics Letters, 88 (2006) 064104.
[6] R. Osterbacka, C. An, X. Jiang, Z. Vardeny, Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals, Science, 287 (2000) 839-842.
[7] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials, 13 (2003) 85-88.
[8] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene), Journal of Applied Physics, 98 (2005) 043704.
[9] Y. Kim, S.A. Choulis, J. Nelson, D.D. Bradley, S. Cook, J.R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene, Applied Physics Letters, 86 (2005) 063502.
[10] F. C. Chen, C.-J. Ko, J.-L. Wu, W.-C. Chen, Morphological study of P3HT: PCBM blend films prepared through solvent annealing for solar cell applications, Solar Energy Materials and Solar Cells, 94 (2010) 2426-2430.
[11] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing” effect in polymer solar cells based on poly (3‐hexylthiophene) and methanofullerenes, Advanced Functional Materials, 17 (2007) 1636-1644.
[12] F. Zhang, K.G. Jespersen, C. Bjoerstroem, M. Svensson, M.R. Andersson, V. Sundstrom, K. Magnusson, E. Moons, A. Yartsev, O. Inganas, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends, Advanced Functional Materials, 16 (2006) 667-674.
[13] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868.
[14] H.N. Tsao, K. Mullen, Improving polymer transistor performance via morphology control, Chemical Society Reviews, 39 (2010) 2372-2386.
[15] Y. He, H.-Y. Chen, J. Hou, Y. Li, Indene− C60 Bisadduct: A new acceptor for high-performance polymer solar cells, Journal of the American Chemical Society, 132 (2010) 1377-1382.
[16] G. Zhao, Y. He, Y. Li, 6.5% Efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization, Advanced Materials, 22 (2010) 4355-4358.
[17] C. Brabec, A. Cravino, D. Meissner, N. Sariciftci, M. Rispens, L. Sanchez, J. Hummelen, T. Fromherz, The influence of materials work function on the open circuit voltage of plastic solar cells, Thin Solid Films, 403 (2002) 368-372.
[18] Z.-L. Guan, J. Bok Kim, Y.-L. Loo, A. Kahn, Electronic structure of the poly (3-hexylthiophene): indene-C60 bisadduct bulk heterojunction, Journal of Applied Physics, 110 (2011) 043719.
[19] N.C. Miller, S. Sweetnam, E.T. Hoke, R. Gysel, C.E. Miller, J.A. Bartelt, X. Xie, M.F. Toney, M.D. McGehee, Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene, Nano Letters, 12 (2012) 1566-1570.
[20] R.M. Beal, A. Stavrinadis, J.H. Warner, J.M. Smith, H.E. Assender, A.A. Watt, The molecular structure of polymer-fullerene composite solar cells and its influence on device performance, Macromolecules, 43 (2010) 2343-2348.
[21] R. Giridharagopal, D.S. Ginger, Characterizing morphology in bulk heterojunction organic photovoltaic systems, The Journal of Physical Chemistry Letters, 1 (2010) 1160-1169.
[22] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, D.L. Carroll, Meso-structure formation for enhanced organic photovoltaic cells, Organic Letters, 7 (2005) 5749-5752.
[23] M. Sanyal, B. Schmidt-Hansberg, M.F. Klein, C. Munuera, A. Vorobiev, A. Colsmann, P. Scharfer, U. Lemmer, W. Schabel, H. Dosch, Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by X-ray diffraction, Macromolecules, 44 (2011) 3795-3800.
[24] T. Agostinelli, S. Lilliu, J.G. Labram, M. Campoy‐Quiles, M. Hampton, E. Pires, J. Rawle, O. Bikondoa, D.D. Bradley, T.D. Anthopoulos, Real‐Time investigation of crystallization and phase‐segregation dynamics in P3HT: PCBM solar cells during thermal annealing, Advanced Functional Materials, 21 (2011) 1701-1708.
[25] E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, Z. Bao, Effects of thermal annealing upon the morphology of polymer–fullerene blends, Advanced Functional Materials, 20 (2010) 3519-3529.
[26] M. Sanyal, B. Schmidt‐Hansberg, M.F. Klein, A. Colsmann, C. Munuera, A. Vorobiev, U. Lemmer, W. Schabel, H. Dosch, E. Barrena, In situ X‐Ray study of drying‐temperature influence on the structural evolution of bulk‐heterojunction polymer–fullerene solar cells processed by doctor‐blading, Advanced Energy Materials, 1 (2011) 363-367.
[27] W.-H. Baek, T.-S. Yoon, H.H. Lee, Y.-S. Kim, Composition-dependent phase separation of P3HT: PCBM composites for high performance organic solar cells, Organic Electronics, 11 (2010) 933-937.
[28] J. Hou, H.-Y. Chen, S. Zhang, G. Li, Y. Yang, Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole, Journal of the American Chemical Society, 130 (2008) 16144-16145.
[29] A. Swinnen, I. Haeldermans, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger, J. Manca, Tuning the dimensions of C60‐based needlelike crystals in blended thin Films, Advanced Functional Materials, 16 (2006) 760-765.
[30] V.D. Mihailetchi, H. Xie, B. de Boer, L.M. Popescu, J.C. Hummelen, P.W. Blom, L.J.A. Koster, Origin of the enhanced performance in poly (3-hexylthiophene):[6, 6]-phenyl C-butyric acid methyl ester solar cells upon slow drying of the active layer, Applied physics letters, 89 (2006) 012107.
[31] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Advanced Functional Materials, 15 (2005) 1193-1196.
[32] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, 15 (2005) 1617-1622.
[33] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868.
[34] M.L. Chabinyc, M.F. Toney, R.J. Kline, I. McCulloch, M. Heeney, X-ray scattering study of thin films of poly (2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b] thiophene), Journal of the American Chemical Society, 129 (2007) 3226-3237.
[35] H. Kang, C.-H. Cho, H.-H. Cho, T.E. Kang, H.J. Kim, K.-H. Kim, S.C. Yoon, B.J. Kim, Controlling number of indene solubilizing groups in multiadduct fullerenes for tuning optoelectronic properties and open-circuit voltage in organic solar cells, ACS Applied Materials & Interfaces, 4 (2012) 110-116.
[36] H. Sirringhaus, P. Brown, R. Friend, M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R.A. Janssen, E. Meijer, P. Herwig, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 401 (1999) 685-688.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top