|
Chapter 1 [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson. A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics 25.5 (1954) 676-677. [2] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells, Science, 285 (1999) 692-698. [3] M.A. Green, Third generation photovoltaics: advanced solar energy conversion, Springer, 2003. [4] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. [5] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films, 511 (2006) 654-662. [6] A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation, Academic Press, 2012. [7] R. Gaudiana, C. Brabec, Organic materials - Fantastic plastic, Nature Photonics, 2 (2008) 287-289. [8] C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183-185. [9] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258 (1992) 1474-1476. [10] N. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. Heeger, G. Stucky, F. Wudl, Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, Applied Physics Letters, 62 (1993) 585-587. [11] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Synthetic Metals, 59 (1993) 333-352. [12] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270 (1995) 1789-1790. [13] J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. Friend, S. Moratti, A. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376 (1995) 498-500. [14] M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, Small-molecule solar cells-status and perspectives, Nanotechnology, 19 (2008) 424001. [15] M.T. Dang, L. Hirsch, G. Wantz, P3HT: PCBM, best seller in polymer photovoltaic research, Advanced Materials, 23 (2011) 3597-3602. [16] R. Osterbacka, C. An, X. Jiang, Z. Vardeny, Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals, Science, 287 (2000) 839-842. [17] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing” effect in polymer solar cells based on poly (3‐hexylthiophene) and methanofullerenes, Advanced Functional Materials, 17 (2007) 1636-1644. [18] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells, Journal of the American Chemical Society, 130 (2008) 732-742. [19] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters, 78 (2001) 841-843. [20] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868. [21] M. Lenes, G.J.A. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, P.W. Blom, Fullerene bisadducts for enhanced open‐circuit voltages and efficiencies in polymer solar cells, Advanced Materials, 20 (2008) 2116-2119. [22] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100 percent, Nature Photonics, 3 (2009) 297-302. [23] N. Blouin, A. Michaud, M. Leclerc, A low‐bandgap poly (2, 7‐carbazole) derivative for use in high‐performance solar cells, Advanced Materials, 19 (2007) 2295-2300. [24] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature Photonics, 3 (2009) 649-653. [25] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties, Journal of the American Chemical Society, 131 (2009) 7792-7799. [26] T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R.m. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Bulk heterojunction solar cells using thieno [3, 4-c] pyrrole-4, 6-dione and dithieno [3, 2-b: 2′, 3′-d] silole copolymer with a power conversion efficiency of 7.3%, Journal of the American Chemical Society, 133 (2011) 4250-4253. [27] H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency, Angewandte Chemie International Edition, 123 (2011) 3051-3054. [28] S.C. Price, A.C. Stuart, L. Yang, H. Zhou, W. You, Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer− fullerene solar cells, Journal of the American Chemical Society, 133 (2011) 4625-4631. [29] M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced Materials, 18 (2006) 789-794. [30] Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, Y. Cao, Fluorene-based low band-gap copolymers for high performance photovoltaic devices, Applied Physics Letters, 84 (2004) 1653-1655. [31] L. Huo, J. Hou, S. Zhang, H.Y. Chen, Y. Yang, A Polybenzo [1, 2‐b: 4, 5‐b′] dithiophene derivative with deep HOMO level and its application in high‐performance polymer solar cells, Angewandte Chemie International Edition, 49 (2010) 1500-1503. [32] M. De Jong, L. Van Ijzendoorn, M. De Voigt, Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes, Applied Physics Letters, 77 (2000) 2255-2257. [33] F.-J.M. Zu Heringdorf, M. Reuter, R. Tromp, Growth dynamics of pentacene thin films, Nature, 412 (2001) 517-520. [34] Y.-H. Lin, Y.-T. Tsai, C.-C. Wu, C.-H. Tsai, C.-H. Chiang, H.-F. Hsu, J.-J. Lee, C.-Y. Cheng, Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA, Organic Electronics, 13 (2012) 2333-2341. [35] H. Yang, T.J. Shin, L. Yang, K. Cho, C.Y. Ryu, Z. Bao, Effect of mesoscale crystalline structure on the field‐effect mobility of regioregular poly (3‐hexyl thiophene) in thin‐film transistors, Advanced Functional Materials, 15 (2005) 671-676. [36] C.H. Woo, B.C. Thompson, B.J. Kim, M.F. Toney, J.M. Frechet, The influence of poly (3-hexylthiophene) regioregularity on fullerene-composite solar cell performance, Journal of the American chemical society, 130 (2008) 16324-16329. [37] L. Li, H. Tang, H. Wu, G. Lu, X. Yang, Effects of fullerene solubility on the crystallization of poly (3-hexylthiophene) and performance of photovoltaic devices, Organic Electronics, 10 (2009) 1334-1344. [38] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D. Bradley, J. Nelson, Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends, Nature Materials, 7 (2008) 158-164. [39] Z. Xu, L.M. Chen, G. Yang, C.H. Huang, J. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, Vertical Phase Separation in Poly (3‐hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells, Advanced Functional Materials, 19 (2009) 1227-1234. [40] L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices, Journal of Materials Chemistry, 20 (2010) 2575-2598. [41] E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, Z. Bao, Effects of thermal annealing upon the morphology of polymer–fullerene blends, Advanced Functional Materials, 20 (2010) 3519-3529. [42] D. Chirvase, J. Parisi, J. Hummelen, V. Dyakonov, Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites, Nanotechnology, 15 (2004) 1317. [43] R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M. Frechet, M.F. Toney, Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules, 38 (2005) 3312-3319
Chapter 2 [1] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J.M. Frechet, M.F. Toney, Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules, 38 (2005) 3312-3319 [2] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Advanced Functional Materials, 15 (2005) 1193-1196. [3] M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV: PCBM ‘plastic’solar cells, Chemical Communications, (2003) 2116-2118. [4] P. Dutta, Grazing incidence X-ray diffraction. Current Science 78 (2000) 1478-1483. [5] S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, J.E. Macdonald, Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions, Macromolecules, 44 (2011) 2725-2734. [6] G. Zhao, Y. He, and Y. Li. 6.5% Efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization, Advanced Materials 22.39 (2010): 4355-4358. [7] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, 15 (2005) 1617-1622. [8] X. Yang, A. Alexeev, M.A. Michels, J. Loos, Effect of spatial confinement on the morphology evolution of thin poly (p-phenylenevinylene)/methanofullerene composite films, Macromolecules, 38 (2005) 4289-4295.
Chapter 3 [1] H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry, 16 (2006) 45-61. [2] J. Peet, M.L. Senatore, A.J. Heeger, G.C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Advanced Materials, 21 (2009) 1521-1527. [3] C.J. Brabec, J.R. Durrant, Solution-processed organic solar cells, MRS Bulletin, 33 (2008) 670-675. [4] N. Sariciftci, L. Smilowitz, A. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258 (1992) 1474-1476. [5] V. Shrotriya, E.H.-E. Wu, G. Li, Y. Yao, Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Applied Physics Letters, 88 (2006) 064104. [6] R. Osterbacka, C. An, X. Jiang, Z. Vardeny, Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals, Science, 287 (2000) 839-842. [7] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials, 13 (2003) 85-88. [8] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene), Journal of Applied Physics, 98 (2005) 043704. [9] Y. Kim, S.A. Choulis, J. Nelson, D.D. Bradley, S. Cook, J.R. Durrant, Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene, Applied Physics Letters, 86 (2005) 063502. [10] F. C. Chen, C.-J. Ko, J.-L. Wu, W.-C. Chen, Morphological study of P3HT: PCBM blend films prepared through solvent annealing for solar cell applications, Solar Energy Materials and Solar Cells, 94 (2010) 2426-2430. [11] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent annealing” effect in polymer solar cells based on poly (3‐hexylthiophene) and methanofullerenes, Advanced Functional Materials, 17 (2007) 1636-1644. [12] F. Zhang, K.G. Jespersen, C. Bjoerstroem, M. Svensson, M.R. Andersson, V. Sundstrom, K. Magnusson, E. Moons, A. Yartsev, O. Inganas, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends, Advanced Functional Materials, 16 (2006) 667-674. [13] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868. [14] H.N. Tsao, K. Mullen, Improving polymer transistor performance via morphology control, Chemical Society Reviews, 39 (2010) 2372-2386. [15] Y. He, H.-Y. Chen, J. Hou, Y. Li, Indene− C60 Bisadduct: A new acceptor for high-performance polymer solar cells, Journal of the American Chemical Society, 132 (2010) 1377-1382. [16] G. Zhao, Y. He, Y. Li, 6.5% Efficiency of polymer solar cells based on poly (3‐hexylthiophene) and indene‐C60 bisadduct by device optimization, Advanced Materials, 22 (2010) 4355-4358. [17] C. Brabec, A. Cravino, D. Meissner, N. Sariciftci, M. Rispens, L. Sanchez, J. Hummelen, T. Fromherz, The influence of materials work function on the open circuit voltage of plastic solar cells, Thin Solid Films, 403 (2002) 368-372. [18] Z.-L. Guan, J. Bok Kim, Y.-L. Loo, A. Kahn, Electronic structure of the poly (3-hexylthiophene): indene-C60 bisadduct bulk heterojunction, Journal of Applied Physics, 110 (2011) 043719. [19] N.C. Miller, S. Sweetnam, E.T. Hoke, R. Gysel, C.E. Miller, J.A. Bartelt, X. Xie, M.F. Toney, M.D. McGehee, Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene, Nano Letters, 12 (2012) 1566-1570. [20] R.M. Beal, A. Stavrinadis, J.H. Warner, J.M. Smith, H.E. Assender, A.A. Watt, The molecular structure of polymer-fullerene composite solar cells and its influence on device performance, Macromolecules, 43 (2010) 2343-2348. [21] R. Giridharagopal, D.S. Ginger, Characterizing morphology in bulk heterojunction organic photovoltaic systems, The Journal of Physical Chemistry Letters, 1 (2010) 1160-1169. [22] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, D.L. Carroll, Meso-structure formation for enhanced organic photovoltaic cells, Organic Letters, 7 (2005) 5749-5752. [23] M. Sanyal, B. Schmidt-Hansberg, M.F. Klein, C. Munuera, A. Vorobiev, A. Colsmann, P. Scharfer, U. Lemmer, W. Schabel, H. Dosch, Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by X-ray diffraction, Macromolecules, 44 (2011) 3795-3800. [24] T. Agostinelli, S. Lilliu, J.G. Labram, M. Campoy‐Quiles, M. Hampton, E. Pires, J. Rawle, O. Bikondoa, D.D. Bradley, T.D. Anthopoulos, Real‐Time investigation of crystallization and phase‐segregation dynamics in P3HT: PCBM solar cells during thermal annealing, Advanced Functional Materials, 21 (2011) 1701-1708. [25] E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, Z. Bao, Effects of thermal annealing upon the morphology of polymer–fullerene blends, Advanced Functional Materials, 20 (2010) 3519-3529. [26] M. Sanyal, B. Schmidt‐Hansberg, M.F. Klein, A. Colsmann, C. Munuera, A. Vorobiev, U. Lemmer, W. Schabel, H. Dosch, E. Barrena, In situ X‐Ray study of drying‐temperature influence on the structural evolution of bulk‐heterojunction polymer–fullerene solar cells processed by doctor‐blading, Advanced Energy Materials, 1 (2011) 363-367. [27] W.-H. Baek, T.-S. Yoon, H.H. Lee, Y.-S. Kim, Composition-dependent phase separation of P3HT: PCBM composites for high performance organic solar cells, Organic Electronics, 11 (2010) 933-937. [28] J. Hou, H.-Y. Chen, S. Zhang, G. Li, Y. Yang, Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole, Journal of the American Chemical Society, 130 (2008) 16144-16145. [29] A. Swinnen, I. Haeldermans, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger, J. Manca, Tuning the dimensions of C60‐based needlelike crystals in blended thin Films, Advanced Functional Materials, 16 (2006) 760-765. [30] V.D. Mihailetchi, H. Xie, B. de Boer, L.M. Popescu, J.C. Hummelen, P.W. Blom, L.J.A. Koster, Origin of the enhanced performance in poly (3-hexylthiophene):[6, 6]-phenyl C-butyric acid methyl ester solar cells upon slow drying of the active layer, Applied physics letters, 89 (2006) 012107. [31] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Advanced Functional Materials, 15 (2005) 1193-1196. [32] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, 15 (2005) 1617-1622. [33] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4 (2005) 864-868. [34] M.L. Chabinyc, M.F. Toney, R.J. Kline, I. McCulloch, M. Heeney, X-ray scattering study of thin films of poly (2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b] thiophene), Journal of the American Chemical Society, 129 (2007) 3226-3237. [35] H. Kang, C.-H. Cho, H.-H. Cho, T.E. Kang, H.J. Kim, K.-H. Kim, S.C. Yoon, B.J. Kim, Controlling number of indene solubilizing groups in multiadduct fullerenes for tuning optoelectronic properties and open-circuit voltage in organic solar cells, ACS Applied Materials & Interfaces, 4 (2012) 110-116. [36] H. Sirringhaus, P. Brown, R. Friend, M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R.A. Janssen, E. Meijer, P. Herwig, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 401 (1999) 685-688.
|