(3.235.139.152) 您好!臺灣時間:2021/05/11 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范紹煒
研究生(外文):Shao-Wei Fan
論文名稱:潰壩過程中底床載及流量歷線之實驗量測
論文名稱(外文):Bed-load transport and water discharge hydrographs in dam breaching experiments
指導教授:卡艾瑋
口試委員:周憲德吳富春賴悅仁
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:86
中文關鍵詞:潰壩小尺度實驗底床載運粒子速度測量追蹤雷射條紋濃度量測
外文關鍵詞:dam breachingsmall-scale experimentsbed-load transportparticle tracking velocimetrylaser stripe concentration measurements
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用小尺度實驗模擬潰壩過程中流量及底床載之互動關係。在等寬的渠道且單一粗糙顆粒鋪成三角壩的條件下,變換上游不同湖的面積來模擬,使用影像處理分析結果。整體潰壩的量測包括水位歷線和壩體隨時間的變化,另一方面小範圍量測包括在不同斷面不同時間的速度和粒子濃度曲線以及不同地方的底床載運移層。濃度曲線根據最近發展而成的雷射條紋濃度量測,此方法是利用雷射量測粒子離牆壁的距離。結合不同次實驗和時間同步化,可以得到在潰壩時完整的流量歷線和輸砂量歷線。小範圍在不同斷面的結果可以用運動層結構來解釋。儘管水流不是均勻流,但是底床載運移層的速度跟較上層的底床載運有關。利用簡單的數學潰壩模式來了解實驗結果,並且跟野外資料做比較。新的數學模式和實驗結果吻合,但現地資料的流量歷線仍然是比模式狹窄。

Dam breaching is one of the most dangerous combination of water flow and sediment motion that can occur. In this thesis, a simplified version of this phenomenon is examined in small-scale laboratory experiments. Triangular dams composed of single size coarse grains are considered, in a channel of constant width, varying the area of the upstream lake. Imaging methods are used to acquire both global and local measurements of the dam breaching flows. Global measurements include lake level hydrographs and evolving longitudinal dam profiles. Local measurements, on the other hand, include time-dependent vertical profiles of velocity and granular concentration at different cross sections, capturing the spatial development of the bed-load transport layer. The concentration profile is acquired using a recently developed method based on measuring the granular distance from the wall using a laser light sheet. By combining and synchronizing the different methods, it is possible to record water and sediment discharge hydrographs over the course of a complete dam breaching event. Local results are interpreted in terms of transport layer structure. Water flow is non-uniform, but the bed-load transport layer adjusts to the flow velocity along the upper interface of the layer. Global results are interpreted with the aid of simple mathematical models of dam breaching, and compared with data from field events. A new simple model of dam breaching is proposed, yielding better agreement with experimental data. Nevertheless, field hydrographs remained narrower than predicted.

口委審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Experimental Set-up and Procedure 3
2.1 Experiment set-up 3
2.2 Experiment conditions 7
2.3 Experiment procedure 10
Chapter 3 Imaging Method 15
3.1 Calibration 15
3.2 Synchronization 18
3.3 Velocity analysis 20
3.4 Concentration analysis 21
3.4.1 Ortho-rectification 22
3.4.2 Binning map 23
3.4.3 Conversion model 24
Chapter 4 Profile results 27
4.1 Case one 28
4.2 Case two 39
Chapter 5 Hydrograph reconstruction 49
5.1 Sediment analysis 49
5.2 Outflow discharge analysis 49
5.3 Transport layer analysis 50
5.4 Hydrograph results 52
5.4.1 Case one 52
5.4.2 Case two 59
Chapter 6 Transport layer behavior 65
Chapter 7 Dam breach behavior 69
7.1 Comparisons between case one and case two 69
7.2 Comparisons with mathematical model and field data 70
Chapter 8 Conclusion and recommendation 82
REFERENCE 84


Capart, H. (2013). Analytical solutions for gradual dam breaching and downstream river flooding. Water Resources Research, 49 , 1968-1987.
Capart, H., & Fraccarollo, L. (2011). Transport layer structure in intense bed-load. Geophysical Research Letters, 38, L20402.
Capart, H., Spinewine, B., Young, D. L., Zech, Y., Brooks, G. R., Leclerc, M., et al. (2007). The 1996 Lake Ha! Ha! breakout flood. Journal of Hydraulic Research, 45, 97-109.
Capart, H., Young, D. L., & Zech, Y. (2002). Voronoi imaging methods for measurement of granular flows. Experiments in Fluids,1 ,121-135.
Fread, D. L. (1988). BREACH: A Breach Erosion Model for the Earthen Dams. National Weather Service.
Henderson, F. M. (1966). Open Channel Flow. New York:McMillan.
Hering, F., Leue, C., Wierzimok, D., & Jahne, B. (1997). Particle tracking velocimetry beneath water waves. Part I:visualization and tracking algorithms. Experiments in Fluids, 23, 472-482.
Hung, C.-Y. (2011). Relation between Debris Flow Rheoloy and Fan Deposit Morpholoy Investigated Using Small-scale Experiments, MSc Thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Jahne, B. (1997). Digital image processing: Concepts, Algorithms, and Scientific applications, Berlin:Springer.
Lee, K., & Duncan, J. M. (1975). Landslide of April 25, 1974 on the Mantaro River, Peru. Washington, D.C.: National Academy of Sciences.

Liu, N., Chen, Z., Zhang, J., Lin, W., Chen, W., & Xu, W. (2010). Draining the Tangjiashan Barrier Lake. Journal of Hydraulic Engineering, 136, 914-923.
Ni, W.-J. (2005). Groundwater drainage and recharge by geomorphically active gullies, MSc Thesis, Graduate Institute of Civil Engineering, National Taiwan University.
Smart, G. M. (1984). Sediment Transport Formula for steep Channels. Journal of Hydraulic Engineering, 110(3), 267-276.
Spinewine, B., Capart, H., Fraccarollo, L., & Larcher, M. (2011). Laser stripe measurement of near-wall solid fraction in channel flows of liquid-granular mixtures. Experiments in Fluids, 50, 1507-1525.
Umbal, J. V., & Rodolfo, K. S. (1996). The 1991 lahars of Southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe lake, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, C. G. Newhall and R. S. Punongbayan, eds, pp. 951-970, Univ. of Washington Press, Seattle.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔