(44.192.70.216) 您好!臺灣時間:2021/05/09 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉佳濠
研究生(外文):Chia-Hao Liu
論文名稱:同步聲-光非破壞檢測於應變率對岩材動-靜力學之研探
論文名稱(外文):Effect of Strain Rate on Dynamic and Static Mechanical Properties of Rocks by Synchronizing Acousto-optic Nondestructive Technique
指導教授:黃燦輝黃燦輝引用關係
指導教授(外文):Tsan-Hwei Huang
口試委員:褚炳麟陳立憲李宏輝
口試委員(外文):Bin-Lin ChuLi-Hsien ChenHung-Hui Li
口試日期:2013-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:157
中文關鍵詞:人工類岩天然岩材應變率非破壞檢測聲射電子斑紋干涉術
外文關鍵詞:artificial rock-likenatural rockstrain rateNDT (nondestructive techniques)AE(Acoustic Emission)ESPI(Electronic Speckle Pattern Interferometry)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
審視岩石力學與相關工程應用之關聯性時,多因簡化假設而先以擬靜態行為進行研究,惟實際案例如邊坡滑移、落石坍方等往往需要考量到較高應變率乃至是衝擊式之力學行為。關於國內應變率之研究,主要以巨觀尺度進行研探;故本研究藉由透過微觀非破壞檢測將巨-微觀力學行為作一驗證比對,以探求擬脆性岩材於不同應變率之破壞特徵。
本研究以非破壞檢測之聲射技術(Acoustic Emission, AE)進行受載試體產生微震裂源之監測;並同步搭配電子斑紋干涉術(Electronic Speckle Pattern Interferometry, ESPI)量測試體表面之變形場,以探討不同應變率對岩材加載歷程及其巨、微觀破壞機制之研析。實驗設計變數乃以:(1)岩材-人造類岩(水泥砂漿)與天然岩材(木山層砂岩);(2)以MTS加載系統執行擬靜態區間之應變率10-5~10-1 s-1;及高應變率102~250 s-1之分離式霍普金森壓桿動態試驗;並於擬靜態應變率區段搭配聲-光非破壞檢測技術。
本研究內容計可研探:(1)巨觀力學行為-岩材峰前的單壓加載歷程,亦即壓應力-壓應變曲線之尖峰強度、楊氏模數、破壞應變及破壞型態;微觀力學行為-岩材之微觀破壞演化特徵:叢聚、初裂。
由試驗成果得知,於擬靜態行為下,兩種擬脆性材料之單壓強度、楊氏模數與破壞應變皆隨應變率提升而漸增,而試體破壞面亦由剪裂轉成劈裂型態;另於高應變率下,單壓強度與楊氏模數顯現陡增之趨勢,但破壞應變則呈遞減趨勢。微觀非破壞檢測發現,10-5~10-3 s-1之應變率為合適觀察區段;當應變率由10-5 s-1增至10-3s-1,兩種岩材均顯示其微裂發展之叢聚時機,由加載比LL = 40~67%提前於LL =19~30%發生,而變形不連續之初裂時機更由LL = 83~93%提前至LL =35~56%,亦即微-巨觀破壞特徵隨應變率之增加而有提前發生之趨勢。本研究相關成果,建議可建置工程資料庫俾供不同應變率之工程佐參。

As examining the application of rock mechanics and engineering association, the behavior of quasi-static is used to study because of simplifying assumptions. Except for actual cases, such as sliding slope and falling rock, etc. are often required considering the higher strain rate even the impact of the mechanical behavior. The researches of strain rate in Taiwan are mainly in the macroscopic scale. Therefore, this study compares the mechanical behaviors of macro to the behaviors of micro by using nondestructive techniques in order to seek quasi-brittle rocks at different strain rates of failure features.
This study uses AE (Acoustic Emission) and synchronizes ESPI (Electronic Speckle Pattern Interferometry) to locate micro-seismic activities and to measure the deformation of the surfaces of specimens. Several key factors are also considered: rock types – artificial (cement mortar) rocks and natural (Mushan sandstone) rocks, strain rates for quasi-static (10-5 - 10-1 s-1) by MTS loading system and high strain rate (102 - 250 s-1) by SHPB (Split-Hopkinson Pressure Bar). Meanwhile, in conjunction of nondestructive techniques at quasi-static strain rate.
This research is about to explore: macroscopic – the loading curve until pre-peak, max. stress, Young’s modulus, failure strain and failure type; Microscopic – localization and initial crack.
From the results, the maximum stress, Young’s modulus and failure strain of two kinds of quasi-brittle materials are rising with strain rate at the quasi-static. And the failure types are changed from shear failure to splitting failure. The high strain rate, the max. stress and Young’s modulus are extremely increasing, but the failure strain is decreasing. In this study, nondestructive techniques show that strain rate from 10-5 to 10-3 s-1 is appropriate for observation. When the strain rate increased from 10-5 to 10-3 s-1, the load level of localization also happened earlier from 40-67% to 19-30%, and the load level of initial crack occurred from 83-93% to 35-56%. It means the failure features of microscopic and macroscopic could both take place ahead of schedule with the increasing strain rate. To build a database of different strain rates for engineering to consult is advised.

論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
表目錄 viii
圖目錄 ix
符號對照表 xiii
中英文縮寫對照表 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍與方法 1
1.2.1 試驗材料 2
1.2.2 破壞性試驗 2
1.2.3 非破壞性檢測 2
1.3 研究流程與架構 2
第二章 文獻回顧 5
2.1應變率相關研究 5
2.1.1 國外相關研究 5
2.1.2 國內相關研究 7
2.2 單軸壓縮加載歷程與微-巨觀破壞演化 8
2.2.1 單軸壓縮試驗完整應力-應變曲線 8
2.2.2 單軸壓縮試驗加載歷程峰後曲線類型 11
2.2.3 強度與變形關係 12
2.3 線彈性破壞力學沿革與應用 13
2.3.1 破裂力學理論發展 13
2.3.2 Griffith能量平衡理論 15
2.4 分離式霍普金森壓桿基本假設與原理 17
2.4.1 SHPB基本假設 17
2.4.2 SHPB計算原理 17
2.4.3 SHPB試驗精度影響因素 21
2.5 非破壞檢測-聲射(AE)之原理與應用 23
2.5.1 聲射定位原理 24
2.5.2 聲射定位準則 27
2.6 非破壞檢測-電子斑點干涉術(ESPI)之沿革與應用 29
2.6.1 光測位移基本理論 29
2.6.2 電子斑點干涉術沿革 31
2.6.3 斑點效應特性內位移系統 32
2.6.4 面內位移系統 33
2.7 巨-微觀破壞演化特徵 36
第三章 試驗架構與執行 39
3.1 試驗材料 39
3.1.1 人造類岩製作 40
3.1.2 天然岩材選用 45
3.2 試驗儀器設備 47
3.2.1 MTS伺服系統 47
3.2.2 分離式霍普金森壓桿試驗裝置與訊號量測設備 48
3.2.3 聲射(AE)擷取系統 51
3.2.4 電子斑點干涉術(ESPI)設備 52
3.3 試驗方法與流程 57
3.3.1 實驗設備校正檢驗 57
3.3.2 非破壞檢測系統校正 58
3.3.3 單軸壓縮試驗步驟 62
3.3.4 分離式霍普金森壓桿試驗步驟 63
3.4 試驗參數說明 64
第四章 試驗結果與分析 65
4.1 動-靜態單壓加載歷程 65
4.2 靜態單壓試驗成果 65
4.2.1 巨觀層面 66
4.2.2 微觀層面 72
4.3 動態單壓試驗成果 83
4.3.1 輸入輸出桿波形比較 84
4.3.2 巨觀參數 86
4.4 動-靜單壓試驗成果整合 91
第五章 結論與建議 96
5.1 結論 96
5.1.1 靜態單壓試驗(應變率 = 10-5 ~ 10-1 s-1) 96
5.1.2 動態單壓試驗(應變率 = 102 ~ 250 s-1) 98
5.1.3 動-靜態單壓試驗整合 99
5.2 建議 99
5.2.1 試驗材料 99
5.2.2 單軸壓縮試驗 100
5.2.3 非破壞檢測 100
參考文獻 102
附錄A.微觀成果 107
附錄B.委員意見回覆表 152

[1]王菀珊,「岩石破裂音射之碎形分析」,碩士論文,國立台灣大學土木工程系,台北 (2005)。
[2]李宏輝,「應變率對麓山帶砂岩力學行為之影響」,岩盤工程研討會論文集,第11-20頁,台南 (2006)。
[3]李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
[4]李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
[5]李啟光,「應變率對岩石材料力學行為影響之研究」,碩士論文,國防大學理工學院環境資訊及工程學系軍事工程碩士班,桃園 (2012)。
[6]李翊銓,「同步化非破壞檢測技術研析細化膠結材之水泥基質材料於三點彎矩試驗之破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2013)。
[7]林佑珊,「以光學干涉研探類岩粒徑大小與形狀於壓、剪過程之破壞特徵」,碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
[8]林坤霖,「應變速率及圍壓對砂岩強度的影響」,碩士論文,國立中央大學土木工程系,桃園 (1989)。
[9]林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
[10]胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
[11]胡錦標,褚炳麟,「表面等高線測繪在非破壞檢性檢驗方面之應用」,國家科學委員會六十五年度研究報告,13-1至13-27,台南 (1976)。
[12]洪健博,「圍束應力對活性粉混凝土在高應變率下動態力學行為之分析」,碩士論文,國立成功大學土木工程學系,台南 (2008)。
[13]陳建仁,「泥岩高速應變下之力學行為」,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,高雄 (2008)。
[14]陳家豪,李佳龍,陳昭旭,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集,第56-63頁,淡水 (2004)。
[15]徐紳翔,「應用非破壞聲射法於岩材受斜向剪切試驗之破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2011)。
[16]張健峰,「黑色片岩預應力室內試驗推估方法之研究」,碩士論文,國立成功大學土木工程系,台南 (2007)。
[17]許琦,朱鴻昇,廖羚慧,「岩石三軸SHPB試驗儀之研發」,岩盤工程研討會論文集,第777-784頁,台北 (2008)。
[18]黃亦敏,「受應變率影響之極軟弱砂岩力學行為及其模式」,碩士論文,國立交通大學土木工程系,新竹 (1997)。
[19]買冠誠,「以非破壞光學干涉術研探岩材於斜剪過程之破壞演化」,碩士論文,國立台北科技大學土木工程系,台北 (2011)。
[20]黃國忠,「應用聲射法與分離元素法探討脆性岩材破壞機理之研究」博士論文,國立台灣科技大學營建工程系,台北 (2008)。
[21]彭國維,「以聲射技術研探類岩粒徑大小與形狀於壓、剪過程之破壞特徵」,碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
[22]黃燦輝,李宏輝,「麓山帶砂岩動態力學行為及其與微組構關係之研究」,行政院國家科學委員會專題研究計畫,台北 (2007)。
[23]楊文欣,「非破壞性聲光同步技術驗證類岩斜剪試驗之剪角影響與預裂效應」碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
[24]廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南 (1993)。
[25]蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
[26]蔡美貞,「木山層砂岩破裂音射源之空間特性」,碩士論文,國立台灣大學土木工程系,台北 (2006)。
[27]翁孟嘉,「麓山帶砂岩之力學特性及其微組構關係研究」,博士論文,國立台灣大學土木工程系,台北 (2002)。
[28]劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
[29]劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
[30]魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
[31]尹小濤,葛修潤,李春光,王水林,「加載速率對岩石材料力學行為的影響」,岩石力學與工程學報,第29卷增1,湖北 (2010)。
[32]李海波,王建偉,李俊如,周青春,劉業群,「單軸壓縮下軟岩的動態力學特性試驗研究」,岩土力學,第25卷第1期,湖北 (2004)。
[33]Butters, J. N and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements.", Transactions of the Institute of Measurement and Control, Vol. 4, p 349-354 (1971).
[34]Bray, D. E. and McBride, D., "Acoustic Emission Technology.", Nondestructive Testing Techniques, New York, p 345-377, John Wiley & Sons Inc. (1992).
[35]Butters, J. N. and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Mesurements.", Transactions of the Institute of Measurement and Control, Vol. 4, pp.349-354 (1971).
[36]Blanton, T. L., "Effect of strain rates from 10-2 to 10-1 sec-1 in triaxial compression tests on three rocks.", Int. J. Rock Mech. Min. Sci., Vol. 18, pp.47-62 (1981)
[37]Chen, L. H., "Failure of Rock Under Normal Wedge Indentation.", Ph. D. Thesis, University of Minnesota, USA (2002).
[38]Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools.", International Journal of Rock Mechanics and Mining Sciences. Vol. 43, p 1023-1033 (2006).
[39]Chen, G., Tao, J. L., Chen, Z. F., Huang, X. C., Xu, W. F., "Correction of lateral inertia effect in shpb.", International Journal of Modern Physics B, Vol. 22, Nos. 9, 10, 11, pp.1045-1049 (2008)
[40]Erik, N., Chen, W. N., "Inertia effect in the impact response of soft materials.", Society for Experimental Mechanics, USA (2010)
[41]Fowler, T. J., "Acoustic Emission of Fiber Reinforced Plastics.", Journal of the Technical Councils of ASCE, Proceedings of the ASCE, Vol. 105, No. 2, p 281-289 (1979).
[42]Gabor, D., "A New Microscopic Principle.", Nature, Vol. 161, p 777-778 (1948).
[43]Grady, D. E. and Kipp, M. E., "Dynamic rock fragmentation.", Fracture Mechanics of Rock(ed. B. K. Atkinson), Academic Press, London, pp.429-475 (1987)
[44]Griffith, A. A., "The phenomena of Rupture and Flow in Solids.", Philosophical Transactions of the Royal Society. "London A221, Vol. 221, p 163-197 (1921).
[45]Grote, D. L., Park, S. W., Zhou, M., "Dynamic behavior of concrete at high strain-rates and pressures : I. Experimental characterization.", Int. J. Impact Engng. 25, pp. 869-886 (2001)
[46]Hertz, H. H., Hertz''s Miscellaneous papers, London: Macmillan. (1896).
[47]Holcomb, D. J. and Costin L. S., "Detecting Damage Surface in Brittle Materials Using Acoustic Emission.", ASME, Journal of Applied Mechanics. Vol. 53, p 536-544 (1986).
[48]Hopkinson, B, "A method of measuring the pressure in the deformation of high explosives by the impact of bullets.", Phil. Trans. Roy. Soc. A213, pp.437-452 (1914)
[49]Irwin, G. R., "Analysis of Stresses and Strain Near the End of A Crack.", Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp.361-364 (1957).
[50]ISRM, "Rock characterization testing and monitoring." (ed. E. T. Brown), Pergamon Press, Oxford (1981)
[51]James, D. L., "Acoustic Emission Investigation into Some Concrete Construction Problems.", Journal of Acoustic Emission, Vol. 8, No. 1-2, p s322-s325. World Meeting on Acoustic Emission. (1989).
[52]Jamie K., Hu, G. L., Ramesh K. T., "A scaled model describing the rate-dependent compressive failure of brittle materials.", Dynamic Behavior of Materials, Vol 1, Conference Proceedings of the Society for Experimental Mechanics Series 99 (2011)
[53]Kaiser, J., "Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch.", Ph.D Thesis, Technische Hochschule, Munich, German. (1953).
[54]Kumar, A., "The effect of stress rate and temperature on the strength of basalt and granite.", Geophysis, Vol. 33, No.3, pp.501-510 (1968)
[55]Kolsky, H., "An investigation of the mechanical properties of materials at very high rates of loading.", Porc Phys Soc London Ser B 62, pp.676-700 (1949)
[56]Leith, E. N. and Upatnieks, J., "Reconstructed Wavefronts and Communication Theory.", Journal of the Optical Society of America., Vol. 52, p 1123-1130 (1962).
[57]Lindholm, "High strain-rate tests, Measurement of Mechanical Properties. "(ed. R.F. Bunshah), Vol. 5, pp. 199-271, USA (1971)
[58]Lajtai, E. Z., Scott, E. J., Duncan and Carter, B. J., "The effect of strain rate on rock strength.", Rock mechanics and rock engineering, Vol. 24, pp.99-109 (1991)
[59]Li, H. B., Zhao, J., Li, T. J., "Triaxial compression tests of a granite at different strain rates and confining pressures.", Int. J. Rock Mech. Min. Sci, Vol. 36, pp.1057-1063 (1999)
[60]Li, H. B., Zhao, J., "Micromechanical modeling of the mechanical properties of granite under dynamic uniaxial compressive loads.", Int. J. Rock Mech. Min. Sci, Vol. 37, pp.923-935 (2000)
[61]Li, Q. M., Meng, H., "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", International Journal of Solids and Structures 40, pp.343-360 (2003)
[62]Masuda K., Mizutani H., Yamada I, "Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. ", J. Phys. Earth 35, pp.37-66 (1987)
[63]Maji, A. K., "Acoustic Emissions from Reinforced Concrete.", Experimental Mechanics, Vol. 34, No. 4, pp.379-388 (1994)
[64]Ohtsu, M., "Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms.", Ph. D. Thesis, Kyoto University, Japan (1989)
[65]Olsson, W. A., "The compressive strength of Tuff as a function of strain rate from 10-6 to 103 sec-1.", Int. J. Rock Mech. Min. Sci, Vol. 28, No.1 , pp.115-118 (1991)
[66]Perkins, R. D. and Green, S. J., "Uniaxial stress behavior of porphyritic tonalite at strain rates to 103 sec-1.", Int. J. Rock Mech. Min. Sci, Vol. 41 , pp.1329-1364 (2004)
[67]Sharpe W.N.J. and Hoge K.G., "Specimen strain measurement in the split-Hopkinson-pressure-bar experiment.", Exp.Mech, 12:pp.570 (1972)
[68]Swan G., Cook J., Bruce S., et al., "Strain rate effect in Kimmeridge Bay Shale.", Int. J. Rock Mech. Min. Sci, Vol. 26, No.2 , pp.135-149 (1989)
[69]Tedesco, J. W., Ross, C. A., "Strain-rate-dependent constitutive equations for concrete.", ASME J. Press. Vessel Technol. 120, pp. 398-405 (1998)
[70]Wang, W. P., Hu, Y. L., Ren, X. T., Xiong, Y. B., "Experimental investigation on dynamic mechanical performances of granite.", Harmonising Rock Engineering and the Environment, London (2012)
[71]Wawersik, W. R. "Detailed Analysis of Rock Failure in Laboratory Compression Test. "Ph.D. Thesis, Department of Civil & Mineral Engineering, University of Minnesota, Minneaplois, Minnesota (1968)
[72]Zhang, Z. X., Kou, S. Q., Yu, J., Yu, Y., Jiang, L. G. and Lindqvist, P. A., " Effects of loading rate on rock fracture. ", Int. J. Rock Mech. Min. Sci, Vol. 36, No.5 , pp.597-611 (1999)
[73]Zhou, X. Q., Hao, H., "Modelling of compressive behavior of concrete-like materials at high strain rate.", International Journal of Solids and Structures 45, pp.4648-4661 (2008)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔