跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王銘傳
研究生(外文):Ming-Chuan Ong
論文名稱:鋼及玻璃纖維橋面格柵板力學行為及試驗研究
論文名稱(外文):Mechanical Behaviors and Tests of Steel and Glass Fiber-Reinforced Polymer Grating Decks
指導教授:周中哲
指導教授(外文):Chung-Che Chou
口試委員:洪宏基張國鎮王仲宇胡宣徳
口試委員(外文):Hong-Ki HongKuo-Chun ChangChung-Yue WangHsuan-Teh Hu
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:158
中文關鍵詞:橋面格柵板單向及疲勞載重試驗古典連續板理論有限元素分析
外文關鍵詞:Steel grating deckGFRP grating deckstatic and fatigue load testClassical Plate TheoryFinite Element Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試將國內目前救災用之便橋橋面板以重量較輕格柵板取代,以達到全程只須以人力方式即可進行組裝的可攜式簡易便利橋梁設計。為了了解兩種不同材料橋面格柵板的力學行為及傳力機制,本研究透過實尺寸結構試驗測試、理論分析與有限元素軟體ABAQUS (2010)來對於兩種不同材料的橋面格柵板 (鋼橋面格柵板及玻璃纖維橋面格柵板)進行分析,以釐清此兩種橋面格柵板在位移及傳力狀況上是否存在差異,以作為日後工程初步設計的參考指標。
為了探討橋面格柵板的力學行為,本研究根據AASHTO (2007)對此兩種橋面格柵板分別進行了單向加載試驗及疲勞載重試驗。於單向加載試驗結果中顯示,鋼橋面格柵板橫桿因勁度太小,以致板整體撓曲勁度貢獻僅來自於載重施加處底下的主桿;而玻璃纖維橋面格柵板因橫、主桿斷面大小雷同且排列較密,造成玻璃纖維橋面格柵板在抵抗外力時,其板有效寬度比鋼橋面格柵板大得許多;而在疲勞載重試驗結果中顯示,鋼橋面格柵板在歷經五萬次反覆載重後並無任何顯著材料疲勞現象發生,然而玻璃纖維橋面格柵板則有大約8%的勁度流失。
而在理論分析中,為了改善前學者 (Timoshenko and Krieger,1959)對於玻璃纖維橋面格柵板撓曲勁度矩陣的嚴重高估現象,本文也嘗試提出另一種等效撓曲勁度矩陣評估方法,並搭配古典連續板理論來進行分析。從分析結果中顯示,本文所提出的方法不旦能彌補前學者(Timoshenko and Krieger,1959)在玻璃纖維橋面格柵板最大位移評估上的不足,且對於鋼橋面格柵板最大位移評估表現也尚可接受。此外為了探討有限元素分析的可靠性,本研究也使用ABAQUS有限元素軟體來對於兩種橋面格柵板進行分析及參數研究。在分析結果中,其ABAQUS分析結果與理論及試驗結果相符,而在參數研究結果中則顯示橋面格柵板的撓曲勁度貢獻絕多來自於主桿,因此若想將橋面格柵板在受到力量下的最大位移最小化,最佳的調整方法為對於橋面格柵板主桿間距作適度的調整。


For the purpose of developing a newer deck system with portable, reusable and suitable capabilities for ease of transportation using manpower, this study attempts to replace the current temporary bridge deck system by grating deck system. So in order to providing a better understanding of grating deck behaviors (Steel grating deck and GFRP grating deck), a full-scale experimental testing, analytical and numerical analyses have been involved by this study.
In the experimental testing, based on the AASHTO 2007, two different type of grating decks were subjected to two different type of loading protocols, the first one is static load test, and the second is fatigue load test. From the result of static load test shows that the secondary bars of steel grating deck were unable to spread the force effectively due to its cross-section are too small if compared to its main bars, however, the situation of GFRP grating deck were be completely different. Despite the deformation of steel grating decks are always small than the deformation of GFRP Grating decks, but in the point of the effective width of decks (Load-transfer ability), the effective width of GFRP grating decks are larger than the steel grating decks all the times. In the fatigue load test, the steel grating decks were not have any significant loss in deck stiffness throughout 50000 cycles of cyclic loading in the range of 2 kN to 20 kN, However, the GFRP grating decks was about 8% stiffness loss found after the fatigue load applied.
In the theoretical analysis, we try to use the Classical Plate Theory combined with Timoshenko & Krieger’s Method (1959) to analyze the responses of two grating decks. This method shows satisfying result in steel grating deck, but very poor result in GFRP grating deck due to the centroid of all bars in GFRP grating deck are not in the same plane. So to fix this problem, this study tries to propose another new method to improve the overestimation or underestimation of Timoshenko & Krieger’s Method (1959) in GFRP grating deck. The result shows that the Classical Plate Theory combined with new proposed method success to fix the problem and get quite well result in both two specimens.
Besides, this research also uses the finite element software ABAQUS to analyze the grating decks behaviors and compare the results with testing results which is proved similar. In the parametric study, the parametric study indicates that the most significant influence on the maximum deflection at the center of deck is the spacing of main bar, followed by the number of main bar, and last is the spacing of secondary bar.


目錄
口試委員審定書
誌謝 I
摘要 II
ABSTRACT III
目錄 V
表目錄 X
圖目錄 XI
照片目錄 XIV
附錄目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究內容 2
第二章 格柵板基本理論及力學行為 3
2.1 前言 3
2.2 文獻回顧 3
2.3 橋面格柵板力學行為 8
2.3.1 古典層板理論介紹 (Classical Laminated Plate Theory) 8
2.3.1.1 層板組成方程式 (Laminate Constitutive Equation) 8
2.3.1.2 薄板平衡方程式 11
2.3.2 均勻連續薄板位移理論解 14
2.3.2.1 均勻連續薄板位移齊次解 14
2.3.2.2 均勻連續薄板位移特殊解 16
2.3.2.3 均勻連續薄板在板中央受到長方形均佈載重 的總位移解 19
2.4 橋面格柵板等效撓曲勁度評估 43
2.4.1 均勻連續薄板板撓曲勁度評估方式 44
2.4.2 橋面格柵板撓曲勁度評估方式 45
2.5 橋面格柵板計算例子 46
2.5.1 鋼橋面格柵板計算例子 47
2.5.1.1 鋼橋面格柵板計算過程 47
2.5.2 玻璃纖維橋面格柵板計算例子 49
2.5.2.1 玻璃纖維橋面格柵板計算過程 49
2.5.3 方法一與方法二之比較 54
第三章 鋼及玻璃纖維橋面格柵板試驗及分析 55
3.1 前言 55
3.2 試驗試體設計 55
3.2.1 複合材料翼型梁 55
3.2.2 鋼橋面格柵板 56
3.2.3 玻璃纖維橋面格柵板 56
3.2.4 輪胎接觸面積 (Tire Contact Area) 57
3.3 材料試驗及材料性質 58
3.4 試體試驗構架裝置及加載歷時 58
3.4.1 橋面格柵板試驗構架 58
3.4.2 油壓制動器 59
3.4.3 資料擷取系統 59
3.4.4 試驗載重歷時 59
3.4.4.1 單向加載試驗 60
3.4.4.2 疲勞測試試驗 60
3.4.5 試驗量測規劃 61
3.5 試體製作、組裝與試驗方式 62
3.6 SG1單向加載試體試驗現象及結果分析 63
3.6.1 試驗現象 63
3.6.2 試驗結果分析與理論驗證 64
3.6.2.1 試驗結果分析 64
3.6.2.2 理論驗證 66
3.7 FRPG1單向加載試體試驗現象及結果分析 67
3.7.1 試驗現象 67
3.7.2 試驗結果分析與理論驗證 68
3.7.2.1 試驗結果分析 68
3.7.2.2 理論驗證 69
3.8 兩組試驗結果比較 71
3.9 SG2疲勞測試載重試驗結果分析及比較 72
3.9.1 試驗現象 73
3.9.1.1 疲勞測試載重試驗現象 73
3.9.1.2 疲勞測試後再單壓試驗現象 73
3.9.2 試驗結果分析與比較 74
3.9.2.1 疲勞測試試驗結果分析與比較 74
3.9.2.2 疲勞測試後單壓試驗結果分析與比較 75
3.10 FRPG2疲勞測試載重試驗結果分析及比較 76
3.10.1 試驗現象 76
3.10.1.1 疲勞測試載重試驗及疲勞測試後再單壓試驗現象 76
3.10.2 試驗結果分析與比較 76
3.10.2.1 疲勞測試載重試驗及疲勞測試後再單壓試驗分析與比較 76
第四章 有限元素分析 78
4.1 前言 78
4.2 試體有限元素模型建立 78
4.2.1 結構模型 78
4.2.2 材料模型 79
4.2.2.1 鋼橋面格柵板模型材料性質 79
4.2.2.2 玻璃纖維橋面格柵板模型材料性質 79
4.3 有限元素分析結果 80
4.3.1 SG1試體模型分析結果 81
4.3.2 FRPG1試體模型分析結果 82
4.4 參數分析及理論實用性驗證 84
4.4.1 模型1、2、5 85
4.4.2 模型1、6、7、2、4 85
4.4.3 模型6、9 86
4.4.4 模型2、3、1、8 86
4.4.5 理論實用性驗證 87
第五章 結論 88
5.1 結論 88
5.2 建議 90
參考文獻 91


1.ABAQUS (2010), Standard user’s manual version 6.10, Dassault Systemes Simulia Corp., Providence, RI, USA, 2010.
2.AISC (2005), Manual of Steel Construction Load and Resistance Factor Design, American Institute of Steel Construction, Chicago, IL, 2005.
3.AASHTO (1994), Standard Specifications for Highway Bridges (15th Edition), The American Association of State Highway and Transportation Officials (AASHTO), Washington, D. C., U.S.A, 1994
4.AASHTO (2007), AASHTO LRFD Bridge Design Specifications (Forth edition), The American Association of State Highway and Transportation Officials (AASHTO), Washington, D. C., U.S.A, 2007.
5.Biddah, A. (2005), “Structural Reinforcement of Bridge Decks using Pultruded GFRP Grating,” Journal of Composite Structures, 74(2006); 80-88.
6.Bejgum, M. (2006), “Testing and Analysis of Heavy Duty Riveted Gratings,” Master Thesis. Thesis Advisor: Menzemer C., University of Akron, Ohio, U.S.A.
7.Chen, H.J. and Tsai, S.W. (1996), “Analysis and Optimum Design of Composite Grid Structures,” Journal of Composite Materials, 30(4): 503–534.
8.Huang, H., Michael, J.C., Dennis, R.M., Harry, W.S, and Victor, N.K. (2001), “Behavior of Open Steel Grid Decks for Bridges,” Journal of Constructional Steel Research, 58(2002): 819-842.
9.Ji, H.S., Byun, J.K., Lee, C.S., Son, B.J., and Ma, Z.J. (2010), “Structural Performance of Composite Sandwich Bridge Decks with Hybrid GFRP-Steel Core,” Journal of Composite Structures, 93(2011):430-442.
10.Kollar, L.P., and Springer, G.S. (2003), Mechanics of Composite Structures, Canbridge University, 2003.
11.Keller, T., and Schollmayer, M. (2003), “Plate Bending Behavior of a Pultruded GFRP Bridge Deck System,” Journal of Composite Structures, 64(2004):285-295
12.Levy, M. (1899), “Sur L’equilibrie Elastique d’une Plaque Rectangulaire,” Compt Rend 129, pp. 535-539
13.Li, G., and Cheng, J. (2007), “A Generalized Analytical Modeling of Grid Stiffened Composite Structures,” Journal of Composite Materials, (2007) 41:2939
14.Pierce, M.J. (2005), “Evaluative Testing of a Novel Weldless Open Steel Grid Deck System.” MS thesis, Thesis Advisor: Christopher J.E., University of Pittsburgh, Pennsylvania, U.S.A.
15.Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shell: Theory and Analysis (Second Edition), CRC Press, Inc., Boca Raton, FL, U.S.A, 2004.
16.Timoshenko, S, and Krieger, W. S. (1959), Theory of Plates and Shells, McGraw-Hill, New York, U.S.A, 1959.
17.Vinson, J.R., Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Materials,” Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1986.
18.Zhou, A. (2002), “Stiffness and Strength of Fiber Reinforced Polymer Composite Bridge Deck Systems,” Doctoral Dissertation, Dissertation Advisor: John J. L., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.
19.陳逸 (2011) 「玻璃纖維橋面板與鋼梁接合行為研究」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。(in Chinese)
20.周中哲,陳逸 (2013)「玻璃纖維橋面板與鋼梁剪力接合設計及實驗評估」結構工程,第二十八卷,第一期,99-116頁。(in Chinese)
21.周中哲,陳映全 (2012)「預力雙核心自復位斜撐發展與耐震實驗」結構工程,第二十七卷,第三期,108-126頁。(in Chinese)。 
22.周中哲、陳逸 (2012)「玻璃纖維橋面板與鋼梁剪力接合設計及實驗評估」,中華民國第十一屆結構工程研討會暨第一屆地震工程研討會,台中,台灣。
23.孫丕凡 (2012) 「高分子複合材料翼型梁螺栓結合試驗」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。(in Chinese)
24.孫丕凡、周中哲、張國鎮、葉芳耀、宋裕祺、劉楨業、洪曉慧、尹世洵、邱毅宗(2012)「高分子複合材料翼型梁螺栓接合試驗」,中華民國第十一屆結構工程研討會暨第一屆地震工程研討會,台中,台灣。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top