(3.238.235.155) 您好!臺灣時間:2021/05/11 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周宏軒
研究生(外文):Hung-Hsuan Chou
論文名稱:水庫淤泥混凝土之性質與應用
論文名稱(外文):The Property and Application of Reservoir-silt Concrete
指導教授:詹穎雯詹穎雯引用關係
口試委員:劉楨業楊仲家廖文正
口試日期:2013-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:水庫淤泥混合水泥爐石水中磨耗抗壓乾縮
外文關鍵詞:reservoir siltHSSRCPTslagabrasion resistancecompressive strengthdrying shrinkage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:708
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因現在地球之環境變遷,造成臭氧層的破壞,溫室效應日益嚴重,故國際間有所協定,需要將排碳量減少,而土木工程為一排碳量相當大的產業。利用廢棄物取代混凝土中的骨材為一種解決之方法。加上台灣土地狹小、高山多、河川湍急,使得水庫有著龐大的淤泥淤積量,這些淤泥使得水庫的容積量日益減少,處理淤泥為一重要課題。故本研究以水庫淤泥資源化為目的,希望透過對水庫淤泥之性質分析,在利用水庫淤泥之前能對淤泥之特性有進一步之了解,進而達到節省成本以及環保之目的。
本研究主要在探討水庫淤泥加入混凝土中的特性,包含抗壓試驗、乾縮試驗、快速氯離子滲透試驗、水中磨耗試驗等。其中考慮到許多因素,包含水灰比、淤泥取代率、不同之淤泥及水泥比例,總共有23組配比。其中淤泥使用了石門水庫以及白河水庫之淤泥,水泥使用了I型水泥及混合水泥。混合水泥為水泥及爐石混合而成,比例為3:7,因此,本研究也針對爐石的部分有所探討。
研究實驗結果顯示水庫淤泥混凝土是可行的,只要解決了乾縮量太大的問題,在強度方面以及耐久性方面都是在可利用範圍內。對於台灣種種規範法定淤泥混凝土不得使用於主結構物中,此研究指出法規是有待更改修正的。


Because of the changes of earth environment, the carbon emissions have to reduce. One of the way to reduce the use of carbon emissions is alternative sources of aggregates based on waste materials. And Taiwan is a small island which has lots of mountain, so the reservoir has a huge amount of silt deposition. The purpose of this research is based on using reservoir silt as a source of concrete aggregate. Using a variety of analyzing methods, characteristics of reservoir silt may be established to make the utilization of reservoir silt more cost efficiency.
This research studied the effect of reservoir silt on concrete mechanical properties, including compressive strength, static elastic modulus, drying shrinkage, RCPT test, and standard test method for abrasion resistance of concrete (underwater method). The mixtures consider many factors, including water/cementitious material ratio, the reservoir silt replacement level, and different types of reservoir silt and cement, there are total 23 mixtures. The types of silt source including Shihmen reservoir and Baiha reservoir; and the types of cement including I type Portland cement and HSS. HSS is combined with I type Portland cement and slag, the proportion of cement and slag is 3:7, so this study also has discussed slag.
Experimental results show that it is feasible about reservoir silt concrete. Unless drying shrinkage, the strength and durability of reservoir silt concrete are available range.


口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 實驗流程 4
第二章 文獻回顧 6
2.1 台灣水庫淤泥之基本介紹 6
2.1.1台灣水庫淤泥之物理性質 6
2.1.2台灣水庫淤泥之化學性質 8
2.2國內外淤泥摻入混凝土之實例 9
2.2.1英國Mersey Silt應用於一般混凝土 9
2.2.2石門水庫12號沉澱池淤泥應用於一般混凝土 11
2.2.3淤泥對於混凝土之限制與影響 17
2.3爐石對混凝土之影響 18
2.3.1爐石之成分 18
2.3.2爐石於混凝土中之水化反應 18
2.3.3爐石對於混凝土之限制與影響 19
2.4 混凝土之體積穩定性 21
2.4.1混凝土中的水 22
2.4.2混凝土乾縮之種類 23
2.4.3混凝土收縮的預測公式 24
2.5混合水泥 28
2.5.1混合水泥定義及分類 28
2.5.2混合水泥之性能與型別適用範圍 29
2.6水中磨損行為 30
2.6.1水中磨損行為的機制及種類 30
2.6.2水中磨損作用的影響因素 32
2.6.3水中抗磨損之統整 34
2.7混凝土抗磨耗能力與混凝土之強度 34
2.7.1混凝土抗磨能力與材料之關係 35
2.7.2混凝土抗壓強度與材料之關係 39
第三章 實驗架構與各實驗內容 41
3.1實驗內容與架構 41
3.2實驗方法與步驟 41
3.2.1混凝土新拌性質實驗 41
3.2.2力學性質實驗 44
3.2.3乾燥收縮 48
3.2.4水中磨耗實驗 48
3.2.5混凝土抗氯離子穿透能力試驗(RCPT) 53
3.3實驗拌合材料 56
3.3.1水泥 57
3.3.2混合水泥 58
3.3.3化學藥劑 58
3.3.4粗粒料 58
3.3.5細粒料 59
3.3.6石門水庫淤泥 60
3.3.7白門水庫淤泥 61
3.4試驗配比與試體製作 63
3.4.1淤泥混凝土試驗配比 63
3.4.2淤泥混凝土拌合及試體製作 65
第四章 試驗結果與討論 67
4.1水庫淤泥混凝土新拌性質試驗 67
4.2水庫淤泥混凝土基本力學性質試驗 69
4.2.1抗壓強度試驗 69
4.2.2彈性模數試驗 77
4.3水庫淤泥混凝土乾縮試驗 86
4.3.1乾縮試驗結果 86
4.3.2乾縮預測模型比較 94
4.4水庫淤泥混凝土水中磨耗試驗 96
4.5水庫淤泥混凝土RCPT試驗 102
第五章 結論與建議 106
5.1結論 106
5.2建議 108
REFERENCE 109


[1]National Aeronautics and Space Administration (NASA), http://www.nasa.gov/
[2]National Oceanic and Atmospheric Administration (NOAA), http://www.noaa.gov/index.html
[3]「水庫淤砂再生資源技術研究」,經濟部水利署,2002。
[4]「水庫淤砂輕質骨材產製及輕質骨材混凝土應用與推廣」,內政部建築研究所,2003。
[5]顏聰,「水庫淤泥輕質粒料產製及輕質粒料混凝土應用與推」,內政部建築研究所補助研究報告,2003。
[6]P.F.G. Banfill, “Alternative materials for concrete – Mersey silt as fine aggregate”, building and environment, Vol. 15, 1980.
[7]中興工程顧問股份有限公司,「石門水庫淤泥多元化處置方案評估規畫綜合報告」,經濟部水利署北區水資源局,2008。
[8]Lyse, “Tests indicate effect of fine clay in concrete”, Engng News Rec. 23, 1934.
[9]D.A. Parsons, “Clay in concrete”, J. Res. nat. Bur. Stand. 10, 1993.
[10]M. Dreux, “Sand cleanliness and concrete properties”, Ann. Inst. Batim. 1964.
[11]E. Buth, D.L. Ivey and T.J. Hirsch, “Correlation of concrete properties with tests for clay content of aggregate”, Highw. Res. Rec. 124, 1966.
[12]E. Buth, D.L. Ivey and T.J. Hirsch, “Dirty aggregate, what difference does it make?”, Highw. Res. Rec. 226, 1968.
[13]R. Bertrandy, “Influence of calcareous fillers on concrete workability”, Ann. Inst. Batim. 1975.
[14]陳清泉、陳振川,「爐石為水泥熟料與添加料對混凝土特性影響之文獻及國外現況調查研究」,台灣營建研究中心報告,1987年。
[15]詹穎雯,「飛灰爐石混凝土之原理、性質與應用」,飛灰爐石於混凝土工程之合理運用研討會論文集,台灣營建研究院,1999。
[16]行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,2001。
[17]S.N. Lim, and T.H. Wee, “Autogenous Shrinkage of Ground-Granulated Blast-Furnace Slag Concrete”, ACI Materials Journal, V.97, No.5, 2000.
[18]F.J. Hogan, and J.W. Meusel, “Evaluation for Durability and Strength Development of a Ground Granulated Blast-Furnace Slag”, Cement Concrete and Aggregates, Vol. 3, No. 1, 1981.
[19]詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通波特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程研究所,1988。
[20]C.H. Wu, T. Yen, Y.W. Liu, T.H. Hsu, “The abrasion erosion resistance of concrete containing blast furnace slag”, International Conference on Concrete and Reinforced Concrete Development Trends, Moscow Russian, 2005.
[21]A.M. Neville, W.H. Dilger, J.J. Brooks, “Creep of Plain and Structural Concrete”, Longman Inc., 1983.
[22]ACI Committee 209, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures”, 1997.
[23]S.D. Kim, “Prediction of Long-term Prestress Loss in Concrete Box Girder Bridges”, University of California, San Diege, 2009.
[24]“CEB-FIP Model Code 1991”, Comite Euro-International du Beton as Bulletins d’Information, 1991.
[25]B. Persson, “Early Age Cracking in Cementitious”, RILEM Publications s.a.r.l., 2002.
[26]A. Lecomte, N. Vulcano-Greullet, C. Steichen, G. Scharfe, “The Risk of Cracking of Fine Hydraulic Mixtures”, Cement and Concrete Research, Vol. 33, 2003.
[27]R. Goel, R. Kummar, and D.K. Paul, “Comparative Study of Various Creep and Shrinkage Prediction Models for Concrete”, ASCE Journal of Materials in Civil Engineering, Vol. 19, No.3, 2007.
[28]C. Videla and C. Gaedicke, “Modeling Portland Blast-Furnace Slag Cement High-Performance Concrete”, ACI Materials Journal, Vol. 101, No.5, 2004.
[29]「混合水泥於巨積混凝土應用研討會」,2013。
[30]A.W. Momber, “Damage to Rocks and Cementitious Materials from Solid Impact”, Rock Mechanics and Rock Engineering, 37(1), 2004.
[31]ACI Committee 210, “Erosion of Concrete in Hydraulic structure (ACI 210R-93)”, American Concrete Institute, Farmington Hill, 1993.
[32]Y.W. Liu, T. Yen, T.H. Hsu, “Abrasion Erosion of Concrete by Waterborne Sand”, Cement and Concrete Research vol.36, 2005.
[33]D. Plum, F. Xufei, “A rock and a hard place”, International Water Power & Dam construction, 1996.
[34]K.H. Frizll and B.W. Mefford Jet, “Designing spillways to prevent cavitation damage”, Concrete International, 1991.
[35]C.T.L. Webster and F. Havelock, “Alternative coatings for the protection of hydraulic turbines from cavitation erosion”, British Columbia Hydro and Power Authority report 136G274, 1987.
[36]P.J. Blau and K.G. Budinski, “Development and use of ASTM standards for wear testing”, Wear, 225-229, 1999.
[37]徐造華,「高強度水工混凝土摻加飛灰之耐磨性及裂縫防治」,博士論文,2006。
[38]ASM International, “Surface Engineering for Corrosion and Wear resistance”, 10M Communications, 2001.
[39]Stachowiak and Batchelor, “Engineering Tribology”, Elsevier, 2005.
[40]Y. Iwai and S. Li, “Cavitation Erosion in Waters Having Different Surface Tensions”, Wear, 254, 2003.
[41]尹延國等人,「水工混凝土的受力狀態與磨損」,合肥工業大學學報,第24卷的4期,2001。
[42]G.F. Truscott, “A Liteature Survey on Abrasive Wear in HyDraulic Machinery”, Wear, 20, 1972.
[43]H. Neilson and A. Gilchrist, “Erosion by a Stream of Solid Particle”, Wear, Vol. 11, 1968.
[44]Tony, C. Liu, “Abrasion Resistance of Concrete”, ACI Journal, 1981.
[45]P. Laplante, P.C. Aitcim, and D. Vezina, “Abrasion Resistance of Concrete”, Journal of Materials in Civil Engineering, Vol.3, No.1, 1991.
[46]Tarun, R. Nailk, Shiw, S. Singh, and Mohammad M. Hossain, “Abrasion Resistance of Concrete as Influenced by Inclusion of Fly Ash”, Cement and Concrete Research, Vol.24, No.2, 1994.
[47]賴正義、劉昌明,「水工結構物耐磨性研究」,台灣電力公司研究發展專題,1994。
[48]R.K. Dhir, P.C. Hwleet, and Y.N. Chan, “Near Surface Characteristic of Concrete Abrasion Resistance”, Materials and Structure Muteriau et Constructions, Vol. 24, No. 140, 1991.
[49]蘇南,「台灣北中部主要河川粗骨材微觀結構、巨觀性質及混凝土抗壓品質研究」,碩士論文,國立台灣工業技術學院,工程技術研究所營建管理組,1987。
[50]沈進發,「混凝土材料品質控制試驗」,常松出版社,1984。
[51]李修齊,「高強度混凝土水中磨耗性質之機理探討」,台灣大學碩士論文,1997。
[52]林建宏,「爐石混凝土水中磨耗性質研究」,台灣大學碩士論文,2004。
[53]賴正義,「高飛灰量混凝土性質」,台電工程月刊,第551期,1994。
[54]Tarun, R. Nailk, Shiw, S. Singh, and Mohammad M. Hossain, “Abrasion Resistance of High-Strength Concrete Made by with Class C Fly Ash”, ACI Materials Journal, 1995.
[55]宋佩瑄,「矽灰在混凝土工程上之發展與應用」,結構工程,1988。
[56]陳明谷,「含矽灰之高性能混凝土水中磨耗性質」,台灣大學碩士論文,1996。
[57]X.G. Hu, A.W. Momber, and Y. Yin, “Erosive Wear of Hydraulic Concrete with low steel fiber content”, Journal of Hydraulic Engineering, ASCE, 2006.
[58]尹延國等人,「水工混凝土小角度沖蝕磨損特性的研究」,摩擦學學報,第21卷第2期,2001。
[59]Horszczaruk, “Abrasion resistance of high-strength concrete in hydraulic structures”, Wear, 259, 2005.
[60]李志信,「鋼纖維混凝土材料之水中磨耗性質與機理之探討」,台灣大學碩士論文,1999。
[61]詹穎雯等人,「添加爐石及纖維織矽灰混凝土水中磨耗性質與自體收縮」,中興工程顧問社專案研究報告,2000。
[62]Kumar, P. Metha, “Concrete Structure Properties and Materials”, Prentice-Hall inc., Englewood-Cliffs, N. J., 1986.
[63]M. Sadegzadeh, and R. Kettle, “Indirect and Non-Destructure and Abrasion Resistance of Concrete”, Magazine of Concrete Research, Vol. 38, No. 137, 1986.
[64]M. Sadegzadeh, C. Page, and R. Kettle, “Surface Micro-Structure and Abrasion Resistance of Concrete”, Cement and Concrete Research, Vol. 17, No. 4, 1987.
[65]Smoak, W. Glenn, “Repairing Abrasion-Erosion Damage to Hydraulic Concrete Structure”, Concrete International, 1991.
[66]S. Mindess, and J.F. Young, “Concrete", Prentice Hall, N.J., 1981.
[67]P.C. Aiticin, and A. Neville, “High Performance Concrete Demystified", Concrete International, Vol. 15, No. 1, 1989.
[68]柳田力,「實用土木材料」,山海堂,土木施工法講座,昭和53年。
[69]British Standard Method, BS 812.
[70]P.C. Aiticin, and P.K. Metha, “Effect of Coarse Aggregate Characteristic on Mechanical Properties of High Strength Concrete", ACI Materials Journal, Vol. 88, No. 5, 1989.
[71]Amirkhanian et al, “The Effect of Igneous Aggregate Source with Various Los Angeles Abrasion Test Values on the Strength of Concrete Mixtures", Cement Concrete and Aggregates, CCAGDP, Vol. 14, No. 2, 1992.
[72]G. Rehm, P. Diem, and R. Zimbelmann, “Moglichkeitenzure Frhohung der Zugfestigkeit von Beton", Schrutrnreihe des DAFStb, Heft 283, Berlin, 1977.
[73]“D. Whiting, Rapid Measurement of the chloride permeability of concrete”, Public Roads 45(3), 1981.
[74]台灣水泥公司。
[75]S. Chandra, J. Bjornstrom, “Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars--Part II”, Cement Concrete Research, Vol. 32, 2002.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔