(3.238.235.155) 您好!臺灣時間:2021/05/16 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭彥廷
研究生(外文):Yen-Ting Kuo
論文名稱:非同步移動式量測法之橋梁頻率與模態振形
論文名稱(外文):Asynchronous Movable Measurement of Bridge Frequencies and Mode Shapes
指導教授:楊永斌楊永斌引用關係
口試委員:郭世榮呂良正陳東陽
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:139
中文關鍵詞:橋梁頻率模態振形間接量測法非同步移動式量測法現地試驗動力實驗
外文關鍵詞:bridgefrequenciesmode shapesasynchronous movable measurementfield testvibration test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般若要了解橋梁系統結構與特性是否改變,最為常見的方式是以橋梁頻率做為參考依據,而本研究嘗試以橋梁頻率做為基礎,進而衍生建立模態振形。一般傳統量測方式多屬於「直接量測法」,該法係直接從安裝在橋面上的感應器擷取出橋梁資訊。近年來,一種稱為「間接量測法」的新量測法被提出,其概念係以移動車輛通過橋梁,間接地分析車體的動力反應並擷取出橋梁資訊。綜觀以上兩種橋梁量測方法,利用間接量測法的「移動性」與「間接性」兩個主要性質,係採用移動車輛逐點在橋梁上的作業方式,並針對車輛的動力反應中間接擷取出橋梁的動力性質。本文仍然沿襲間接量測法的精神,採用移動車輛作為量測工具,在橋面上進行「非同步性」逐點量測出橋梁頻率和測點振幅,進而建立橋梁模態振形,此法稱為「非同步移動式量測法」。
本研究係以非同步移動式量測法建立橋梁模態振形,先以理論推導的方式建立橋梁模態振形,接著,再以現地試驗的方式證明此法的可行性。最後,比較傳統直接量測法與非同步移動式量測法,兩量測法所建立的模態振形之異同,再加以統整結論,以作為未來研究之參考。


In order to determine if the dynamic properties of a bridge structure have changed or not, the most common way is to detect the frequency of the bridge frequency and use it as a reference. This study attempts to measure the frequencies of the bridge, and then to establish the associated mode shapes. Conventionally, the bridge dynamic properties are measured from the dynamic response of the bridge via the vibration sensors directly mounted on the bridge, which has been referred to as the direct approach. In recent years, a new method, called the indirect approach, has been proposed by Yang and his co-workers. The idea of this method is to obtain the bridge properties indirectly from the dynamic response recorded on a moving vehicle during its travel over the bridge of concern. The direct method has the advantage of being accurate, but lacks the property of mobility, while it is generally labor-intensive. In this study, we shall use the indirect approach for its movability and indirectness. Specifically, we shall let the test vehicle to move over the bridge, but stay from point to point of the bridge for the vehicle response to be recorded. The bridge information including the frequencies and mode shapes will be extracted from the vehicle response. Such an approach is by nature indirect and asynchronous, and therefore will be referred to as the “asynchronous movable measurement for bridge dynamic properties.”
This study is based on the technique of asynchronous movable measurement to extract the frequencies and mode shapes of the bridge. First of all, we shall demonstrate the approach for establishing mode shapes of a bridge by using theoretical approach. Then, we shall proceed to illustrate the feasibility of the technique of asynchronous movable measurement through a series of field tests. Finally, by comparing the results obtained by the present approach with those by the direct approach, the similarities and differences of the two approaches will be discussed, with the advantages and disadvantages of each approach identified. Concluding remarks are drawn at the end of study to provide insight for reference for further researches.


目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIX
第一章、導論 1
1.1 前言 1
1.2 橋梁頻率之重要性 1
1.3 橋梁模態振形之建立 2
1.4 直接量測法 2
1.5 間接量測法 3
1.6 非同步移動式量測法 3
1.7 研究目的 3
1.8 論文架構 4
第二章、文獻回顧 7
2.1 前言 7
2.2橋梁量測法之回顧 7
2.2.1 直接量測法 7
2.2.2 間接量測法 8
2.3 橋梁模態之相關回顧 11
2.4 小結 12
第三章、非同步移動式量測法之理論基礎 15
3.1 前言 15
3.2 解析推導 15
3.3 模態振形之數學模擬 18
3.4 訊號處理方法 20
3.4.1 傅立葉轉換 21
3.4.1.1 取樣頻率(Sampling Rate)─ 不同取樣頻率的探討 21
3.4.1.2 歷時時間(Time History)─ 不同歷時時間的探討 23
3.5.2 相對相角圖 24
3.5.3 頻率轉換函數(Transfer Function) 25
3.6 小結 25
第四章、非同步移動式量測試驗 39
4.1 前言 39
4.2 試驗儀器 39
4.2.1 曳引車 39
4.2.2 訊號擷取系統(SPC - 51) 40
4.2.3 振動感應器 40
4.2.3.1 感應器連接方式 41
4.2.3.2 感應器精準度驗證 41
4.3 目標試驗橋梁(平埔橋) 42
4.4 車體試驗項目 42
4.4.1 車體靜力試驗 43
4.4.1.1 微振動試驗(Ambient Vibration) 43
4.4.1.2 強迫振動試驗(Force Vibration) 44
4.4.2 訊號傳遞試驗 44
4.4.2.1 前後車連結試驗(Linkage Test) 44
4.4.2.2 路徑傳遞試驗(Path Test of Signal Transduction) 44
4.5 橋梁現地試驗 45
4.5.1 微振動試驗(Ambient Vibration Test) 45
4.5.2 非同步性移動式量測試驗(Asynchronous Movable Measuring Test) 45
4.6 小結 46
第五章、實驗車之車體試驗 55
5.1 前言 55
5.2 實驗車之規格與設計理念 55
5.3 實驗車之重量與質心位置 56
5.4 車體靜力試驗 56
5.4.1 微振動試驗(Ambient Vibration) 56
5.4.1.1 垂直向 57
5.4.1.2 滾動向 58
5.4.1.3 俯仰向 58
5.4.2 強迫振動試驗(Forced Vibration) 59
5.5 訊號傳遞試驗 60
5.5.1 前後車連結試驗(Linkage Test) 60
5.5.2 路徑傳遞試驗(Path Test of Signal Transduction) 60
5.6 小結 61
第六章、橋梁現地試驗 87
6.1 前言 87
6.2 微振動試驗之模態振形(Ambient Vibration Test for Mode Shapes) 87
6.3 非同步移動式量測試驗之模態振形(Asynchronous Movable Measuring Test for Mode Shapes) 88
6.3.1 步驟一:規劃實驗點位與參考點位 89
6.3.2 步驟二:安裝感應器(橋梁右側) 89
6.3.3 步驟三:進行十三次點位試驗(橋梁右側) 89
6.3.4 步驟四:速度歷時圖轉換成頻譜圖(橋梁右側) 89
6.3.5 步驟五:頻率峰值的選取(橋梁右側) 90
6.3.6 步驟六:利用參考點消除時間因素 90
6.3.7 步驟七:建立模態振形(橋梁右側) 90
6.3.8 步驟八:安裝感應器(橋梁左側) 91
6.3.9 步驟九:進行十三次點位試驗(橋梁左側) 91
6.3.10 步驟十:時間歷時圖轉換成頻譜圖(橋梁左側) 91
6.3.11 步驟十一:頻率峰值的選取(橋梁左側) 91
6.3.12 步驟十二:建立模態振形(橋梁左側) 92
6.4 模態振形之比較(微振動試驗vs非同步移動式量測試驗) 92
6.5 小結 93
第七章、結論與未來展望 131
7.1 結論 131
7.1.1 橋梁模態振形之建立 131
7.1.2 橋梁現地試驗之前置作業 131
7.1.3 橋梁現地試驗之注意事項 132
7.1.4 非同步移動式量測試驗之結果 132
7.2 未來展望 133
參考文獻 135


Ataei, S. and Mohammadzade, S. (2010), “Modal shape identification of the vibration data of bridge dynamic test using fuzzy clustering,” Expert Systems with Applications 37: 5813–5817.

Au, S.K. (2011), “Assembling mode shapes by least squares,” Mechanical Systems and Signal Processing 25: 163–179

Bu, J.Q., Law, S.S., and Zhu, X.Q. (2006), “Innovative bridge condition assessment from dynamic response of a passing vehicle.” Journal of Engineering Mechanics 132: 1372-1379.

Brownjohn, J.M.W., Magalhaes, F., Caetano, E., and Cunha, A. (2010), “Ambient vibration re-testing and operational modal analysis of the Humber Bridge,” Engineering Structures 32(8): 2003-2018.

Doebling, S.W., Farrar, C.R., Prime, M.B., and Shevitz, D.W. (1996), Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review, Los Alamos National Laboratory: LA-13070-MS

Huang, C.S., Yang, Y.B., Lu, L.Y., and Chen, C. H. (1999), “Dynamic Testing and System Identification of A Multi-span Highway Bridge” Earthquake Engineering & Structural Dynamics 28: 857-878.
Ho, D.D., Kim, J.T., Park, J.H., and Hong, D.S. (2010), “Field Vibration Tests-based Model Update for System Identification of Railway Bridge,” Proc. of SPIE 7647: 764731-1-764731-12

Kim, J.T., Ryu, Y.S., Cho, H.M., and Stubbs, N. (2003), “Damage identification in beam-type structures: frequency-based method vs mode-shape-based method,” Engineering Structures 25: 57–67.

Lin, C.W., and Yang, Y.B. (2005), “Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification,” Engineering Structures 27: 1865-1878.

Magalhaes, F., Cunha, A., and Caetano, E. (2008), “Dynamic monitoring of a long span arch bridge,” Engineering Structures 30: 3034–3044.

Ren, W.X., Zhao, T., and Harik, I.E. (2004), “Experimental and analytical modal analysis of steel arch bridge,” Journal of Engineering Mechanics 130: 1022-1031.

Reynders, E., De Roeck, G., Bakir, P.G., and Sauvage, C. (2007), “Damage identification on the Tilff bridge by vibration monitoring using optical fiber strain sensors,” Journal of Engineering Mechanics 133(2): 185-193.

Salawu, O.S., Williams, C. (1995), “Review of full-scale dynamic testing of bridge structures,” Engineering Structures 17(2): 113-121.


Siringoringo, D.M. and Fujino, Y. (2008a), “System identification applied to long-span cable-supported bridges using seismic records,” Earthquake Engineering and Structural Dynamics 37: 361-386.

Siringoringo, D.M., and Fujino, Y. (2012), “Estimating Bridge Fundamental Frequency from Vibration Response of Instrumented Passing Vehicle: Analytical and Experimental Study,” Advances in Structural Engineering Vol. 15 No.3: 433-459.

Wilson, J.C., and Liu, T. (1991), “Ambient vibration measurements on a cable-stayed bridge,” Earthquake Engineering and Structural Dynamics 20: 723-747

Wenzel, H., and Pichler, D. (2005), Ambient Vibration Monitoring, John Wiley & Sons Ltd.

Yang, Y.B., and Yau, J.D. (1997), “Vehicle-bridge interaction element for dynamic analysis,” Journal of Structural Engineering, ASCE 123(11): 1512-1518.

Yang, Y.B., Lin, C.W., and Yau, J.D. (2004), “Extracting bridge frequencies from the dynamic response of a passing vehicle,” Journal of Sound and Vibration 272: 471-493.

Yang, Y.B., and Lin, C.W. (2005), “Vehicle-bridge interaction dynamics and potential applications,” Journal of Sound and Vibration 284: 205-226.

Yang, Y.B., and Chang, K.C. (2009a), “Extracting the Bridge Frequencies Indirectly from a Passing Vehicle: Parametric Study,” Engineering Structures, 31(10): 2448-2459.

Yang, Y.B., and Chang, K.C. (2009b), “Extraction of Bridge Frequencies from the Dynamic Response of a Passing Vehicle Enhanced by the EMD Technique,” Journal of Sound and Vibration, 322(4-5): 718-739.

Yamamoto, K., Oshima, Y., Tanaka, A., and Mori, M. (2009), “Monitoring of coupled vibration between bridge and train,” Proceedings of the Twenty-Second KKCNN Symposium on Civil Engineering: 105-110, Chiangmai, Thailand.

Zhang, Y., and Xiang, Z.H. (2011), “Frequency Shift Curve Based Damage Detection Method for Beam Structures,” Computers, Materials and Continua 26: 19-35.

Zhang ,Y., Wang L., and Xiang Z.(2012), “Damage detection by mode shape squares extracted from a passing vehicle,” Journal of Sound and Vibration 331: 291-307.

Ladislav Fryba著,齊法琳等譯(2007)「鐵路橋梁動力學」, 第四章, p.38-48.

陳韋帆(民國99年),「橋梁頻率間接量測法之實驗研究」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。

尤豪文(民國101年),「橋梁頻率間接量測法之車體設計與實驗研究」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。

趙鼎夫(民國101年),「橋梁頻率間接量測法之數值模擬及實驗訊號處理」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top