(3.235.245.219) 您好!臺灣時間:2021/05/10 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊憶婷
研究生(外文):Yi-Ting Yang
論文名稱:微波衛星觀測西北太平洋雙眼牆颱風特性之探討
論文名稱(外文):Microwave Satellite Observation of Tropical Cyclone with Concentric Eyewall in Western North Pacific Basin
指導教授:郭鴻基郭鴻基引用關係
指導教授(外文):Hung-Chi Kuo
口試委員:吳俊傑李清勝周仲島王重傑游政谷楊明仁
口試委員(外文):Chun-Chieh WuCheng-Shang LeeBen Jong-Dao JouChung-Chieh WangCheng-Ku YuMING-JEN YANG
口試日期:2013-01-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:116
中文關鍵詞:雙眼牆微波衛星觀測眼牆置換T-Vmax圖不對稱對流
外文關鍵詞:Concentric EyewallMicrowave Satellite ObservationEyewall Replacement CycleT-Vmax diagramAsymmetric Convection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展一客觀方法判斷雙眼牆結構。此法直接從SSM/I及TMI 85GHz衛星雲圖得到颱風的雲頂黑體輻射溫度,並設定標準判斷雙眼牆結構。透過這個方法我們一共分析了1997至2011年間西北太平洋26774張微波衛星雲圖,共判斷出234個雙眼牆微波衛星雲圖、77個雙眼牆颱風以及95個雙眼牆颱風個案,其中包含了16個多次形成雙眼牆的個案。研究中包含:(1)西北太平洋15年間雙眼牆颱風的氣候統計、(2)雙眼牆形成後的結構變化,及(3)雙眼牆形成前的不對稱對流分析。
(1) 在氣候統計的研究中,我們將Niño Index達到+0.5oC和-0.5oC連續5個月時,定義為暖期及冷期,比較了暖期和冷期形成的雙眼牆颱風。在暖期時,因為太平洋東側的海水相對溫度比平常時期高,雙眼牆颱風形成位置偏東,而且有較高比例的雙眼牆颱風生成,並且雙眼牆形成前後24小時期間可能因為沃克環流相對減弱,850-200 hPa的垂直風切較弱,可能的原因是由於暖期的東側太平洋海水溫度較高,導致暖期的雙眼牆颱風強度較強,較能維持其強度。
(2) 雙眼牆的結構變化研究中發現,雙眼牆形成後不單只有一般所熟知的外眼牆內縮並取代內眼牆的眼牆置換過程(Eyewall replacement cycle, ERC),有23%的雙眼牆颱風可以維持雙眼牆結構很長的時間(Concentric eyewall maintained, CEM),另外約24%個案是由外眼牆部分消散,而內眼牆仍然存在(No replacement cycle, NRC)。分析這3種結構特徵及環境因子隨時間變化,顯示CEM個案強度較強、兩個眼牆間的弱對流區(moat)及外眼牆較寬,根據正壓理論較為穩定,此外這一類個案形成於較好的環境,有利於其維持結構。NRC個案則是平均形成位置較高緯度並且向北移動的速度較快,容易遭遇到強垂直風切等不利的環境,導致外眼牆部分開始消散。ERC個案則因為環境因子沒有明顯的特徵變化,可能是由內在動力控制。本研究也發展了T-Vmax圖,將以颱風為中心的400 km×400 km範圍內對流強度(Convection activity, CA)與強度隨時間變化同時包含於圖中,希望可以提供颱風預報參考。
(3) 在雙眼牆形成前的不對稱對流分析中,我們發現對流分布都坐落在下風切處的左側,沒有形成雙眼牆的個案在垂直風切下風切處左側的不對稱對流,比雙眼牆的個案略強,可能的原因是沒有形成雙眼牆的個案垂直風切也較強的緣故。從雙眼牆生成季節來看不對稱對流的分布,我們發現4-6月及7-9月間,不對稱對流分布於東南側至南側,10-12月間則分布於北側。將雙眼牆個案分為南側不對稱對流主宰及北側不對稱對流主宰,兩者的平均垂直風切方向分別為東北風及西風,南側主宰的個案颱風強度略強,但是在形成雙眼牆的地理位置上來看,形成的緯度沒有明顯的差異,形成的經度則是北側主宰偏東,南側主宰平均偏西,也處在較有利的環境下,可能也因此強度較強。


An objective method is developed to identify concentric eyewalls (CEs) for typhoons using passive microwave satellite imagery from 1997 to 2011 in the western North Pacific basin. There were 26,774 SSM/I and TMI satellite images examined. Out of these, 95 CE cases with 234 CE images were identified, including 16 cases of multiple CE formation. (1) The 15-years climatology, (2) CE structural changes and (3) Asymmetric convection before CE formation studies are included in this dissertation.
(1) We compared the typhoons with CE structure in the warm and cold episodes. (Warm and cold episodes based on a threshold of +0.5oC and - 0.5oC for the Oceanic Niño Index, respectively). The SST in the eastern Pacific was warmer in warm episode resulted in that the CE structure tend to occur farther east in the basin. Moreover, the weaker vertical shear, which because of the weaker Walker circulation led the CE typhoons were with higher intensity and maintained the intensity in the warm episode.
(2) Three CE structure changes are identified: CE with an eyewall replacement cycle (ERC; 37 cases), CE with no replacement cycle (NRC; 17 cases), and CE is maintained for an extended period (CEM; 16 cases). The inner eyewall (outer eyewall) of the ERC (NRC) type dissipates within 20 h after CE formation. The CEM type has its CE structure maintained for more than 20 h (mean duration time is 31 h). The NRC (CEM) cases typically have fast (slow) northward translational speeds and encounter large (small) vertical shear and low (high) sea surface temperatures. The CEM cases have a relatively high intensity, and the moat size (61 km) and outer eyewall width (70 km) are approximately 50% larger than the other two types. Both the internal dynamics and environmental conditions are important in the CEM cases, while the NRC cases are heavily influenced by the environment. The ERC cases may be dominated by the internal dynamics due to more uniform environmental conditions. We also develop the T-Vmax diagram (where T is the brightness temperature and Vmax is the best track estimated intensity) demonstrates structural and intensity changes of CE typhoons for a time sequence of the intensity and convective activity (CA) relationship.
(3) We compared the asymmetric convection which is between 150 km and 400 km from TC center 24 h before CE formation/the maximum intensity in CE typhoons/ no-CE typhoons. The asymmetric convection was located in south to southwest region and downshear to the left region both in CE and no-CE typhoons. Our results also showed the asymmetric convection was located in south to southwest region between April and June, and between July and September. However, the asymmetric convection located in north region between October and December. We also compared the cases which the asymmetric convection located in the north and south. The intensity of south asymmetric convection dominated cases (SAC) is stronger than that of north asymmetric convection dominated cases (NAC). The SAC and NAC cases were with northeasterly and westerly windshear, respectively. The SAC cases occurred farther west in the basin and encourage favorable environment.


摘要 I
Abstract III
目錄 V
圖表目錄 VII
第一章、前言 1
1.1雙眼牆颱風簡介 1
1.2雙眼牆颱風生成理論回顧 2
1.3雙眼牆颱風強度及結構變化研究回顧 5
1.4研究目的及動機 7
第二章、資料說明及方法 9
2.1 資料來源 9
2.1.1 微波衛星資料 9
2.1.2 JTWC Tropical Cyclone Best Track 資料 11
2.1.3 STIPS資料 15
2.2 衛星雲圖的資料處理與計算 16
2.3 衛星雲圖的雙眼牆結構判別 17
第三章、雙眼牆颱風氣候統計 20
3.1雙眼牆颱風的氣候統計 20
3.2 雙眼牆颱風的強度變化統計 22
第四章、雙眼牆颱風的結構變化 28
4.1 雙眼牆颱風的結構變化 28
4.2 不同結構變化的特徵與環境因子的影響 32
第五章、雙眼牆颱風的形成前對流分布與分析 36
5.1 雙眼牆颱風形成前的對流分布 36
5.2對流分布和季節與環境因子分析 38
第六章、結論 40
6.1雙眼牆颱風的15年氣候統計 41
6.2雙眼牆颱風的結構變化 42
6.3雙眼牆颱風形成前的對流分布及分析 44
附錄一、加入AMSR-E與SSMIS衛星資料的測試 46
附錄二、颱風強度與位置測試 48
附錄三、雙眼牆颱風和均勻圓環颱風 52
附錄四、Categories 1-3雙眼牆颱風的對流強度變化 54
附錄五、和Kuo et al. (2009)個案相比較 55
附錄六、Zeb和Alex交互作用形成CE結構 57
附錄七、雙眼牆個案資料 60
附錄八、縮寫對照表 63
參考文獻 65

劉人鳳,2004:利奇馬颱風之都卜勒雷達分析。國立台灣大學大氣科學研究所碩士論文,98頁。
Abarca S. F. and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802.
Bankert, R. L., and P. M. Tag, 2002: An automated method to estimate tropical cyclone intensity using SSM/I imagery. J. Appl. Meteor., 41, 461–472.
Barnes, G. M., M.D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 2348–2368.
——, E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a rainband. J. Atmos. Sci., 40, 2125–2137.
Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947-957.
Brueske, K. F., and C. S. Velden, 2003: Satellite-based tropical cyclone intensity estimation using the NOAA–KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131, 687–697.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. NRL/MR/7540-02-16.
Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110-2123
——, ——, 2003: The relationship between motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366-376.
DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209-220.
——, and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern north Pacific basins. Wea. Forecasting, 14, 326-337.
——, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531-543.
Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Validation of an Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithm. J. Appl. Meteor., 43, 282–296.
Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downwdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 3269–3293.
Dodge, P., R. W. Burpee, and F. D. Marks Jr., 1999: The kinematic structure of a hurricanewith sea level pressure less than 900mb. Mon. Wea. Rev., 127, 987-1004.
Dvorak, 1973: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 45, 19 pp.
——, 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430.
Emanuel, K.,1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026.
——, 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139-1152.
Erickson, C. O., 1972: Evaluation of a technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 42, 28 pp.
Farrar, M. R. and E. A. Smith, 1992: “Spatial resolution enhancement of terrestrial features using deconvolved SSM/I brightness temperatures,” IEEE Trans. Geosci. Remote Sensing, 30, 349-355.
Fisher, B. and D. B. Wolff, 2011: Satellite Sampling and Retrieval Errors in Regional Monthly Rain Estimates from TMI, AMSR-E, SSM/I, AMSU-B, and the TRMM PR. J. Appl. Meteor. Climatol. 50, 994-1023.
Guard, C. P., L. E. Carr, F. H. Wells, R. A. Jeffries, N. D. Gural, and D. K. Edson, 1992: Joint Typhoon Warning Center and the challenges of multi-basin tropical cyclone forecasting. Wea. Forecasting, 7, 328–352.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 276-277. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.]
——, and ——, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conference on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 6B.1. [Available online at [http://ams.confex.com/ams/28Hurricanes/techprogram/paper_138300.htm]
——, ——, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, 2006: Tropical cyclone multiple eyewall characteristics. Preprints, 27th Conf. on Hurricane and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [Available online at http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm.]
——, T. F. Lee, F. J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001: Real-time Internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Amer. Meteor. Soc., 82, 567-578.
Hendricks, E. A., M. S. Peng, B. Fu, T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243–3271.
Hence, D. A. and R. A. Houze, Jr., 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by TRMM Precipitation radar. J. Atmos. Sci., 69. 1021-1036.
Herndon, D., and C. Velden, 2004: Upgrades to the UW-CIMSS AMSU-based TC intensity algorithm. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 118–119.
Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294-3315.
Hoshino, S., and T. Nakazawa, 2007: Estimation of tropical cyclone’s intensity using TRMM/TMI brightness temperature data. J. Meteor. Soc. Japan, 85, 437–454.
Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235-1239.
Huang, Y.-H., M.-T. Montgomery, and C.-C. Wu, 2011: Concentric Eyewall Formation in Typhoon Sinlaku (2008) Part II: Axisymmetric Dynamical Processes. J. Atmos. Sci., 69, 662–674.
Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N.C. Gordy, and S. J. Kusselson, 2000: Satellite Analysis of Tropical Cyclones using the Advanced Microwave Sounding Unit (AMSU). Bulletin of the American Meteorological Society, 81, 1241-1259.
Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18, 204-223.
——, C. R. Sampson, and M. DeMaria, 2005: An operational Statistical Typhoon Intensity Prediction Scheme for the Western North Pacific. Wea. Forecasting, 20, 688-699.
Kodama, Y.-M., and T. Yamada, 2005: Detecability and configuration of tropical cyclone eyes over the western north Paciic in TRMM PR and IR observations. Mon. Wea. Rev., 133, 2213-2226.
Kossin J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interaction between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 3893-3917.
——, and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in Hurricanes. Mon. Wea. Rev., 137, 876-892.
——, and C. S. Velden, 2004: A pronounced bias in tropical cyclone minimum sea-level pressure estimation based on the Dvorak technique. Mon. Wea. Rev., 132, 165–173.
Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809-817.
Kuo, H.-C., C.-P. Chang, and C.-H. Liu, 2012: Convection and rapid filamentation in Typhoon Sinlaku during TCS-08/T-PARC. Mon. Wea. Rev., 140, 2806-2817.
——, ——, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 3758-3770.
——, L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722-2734.
——, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183-5198.
Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.
Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 4882-4898.
Martinez, Y., G. Brunet, M. K. Yau, and X. Wang, 2011: On the dynamics of concentric eyewall genesis: Space-time empirical normal mode diagnosis. J. Atmos. Sci., 68, 457-476.
McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull Amer. Meteor. Soc., 85, 1663-1666.
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricane. Quart. J. Roy. Meteor. Soc., 123, 435-465.
Moon, Y., D. S. Nolan, and M. Iskandarani, 2010: On the Use of Two-Dimensional Incompressible Flow to Study Secondary Eyewall Formation in Tropical Cyclones. J. Atmos. Sci., 67, 3765-3773.
Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. JAMES. Submitted.
Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 3323-3338.
Olander, T. L., and C. S. Velden, and J. P. Kossin, 2004: The Advanced Objective Dvorak Technique (AODT)—Latest upgrades and future directions. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 294–295.
——, and ——, 2007: The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. Wea. Forecasting, 22, 287-298.
Ortt, D., and S. S. Chen, 2008: Effect of environmental moisture on rainbands in Hurricane Rita and Katrina (2005). 28th Conference on Hurricane and Tropical Meteorology, American Meteorological Society, Miami, FL, Amer. Meteor. Soc., preprint 5C.5.
Peng, J., T. Li, and M. S. Peng, 2009: Formation of tropical cyclone concentric eyewalls by wave-mean flow interactions. Advances in Geosciences, April 2009. Volume 10.
Poe, G., 1990: Optimum interpolation of imaging microwave radiometer data, IEEE Trans. Geosci. Remote Sens., 28, 800-810.
——, K. Germain, J. Bobak, S. Swadley, J. Wessel, B. Thomas, J. Wang, and B. Burns, 2001: DMSP calibration/validation plan for the Special Sensor Microwave Imager Sounder (SSMIS). Naval Research Laboratory Rep., 32 pp.
Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 209-2109.
Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of hurricane eyewall replacement cycles. Q. J. R. Meteor. Soc., 134, 583-593.
——, W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325-340.
Samsury, C. E. and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 3502–3517.
Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595-605.
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829-3847.
Spencer, R., and W. D. Braswell, 2001: Atlantic TC monitoring with AMSU-A: Estimation of maximum sustained wind speeds. Mon. Wea. Rev., 129, 1518–1532.
——, H. M. Goodman, and R. E. Hood, 1989: Precipitation Retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254-273.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.
Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 1195–1210.
——, T. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite imagery. Wea. Forecasting, 13, 172–186.
Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 1405–1426.
Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158-1181.
——, 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model-TCM4. J. Atmos. Sci., 65, 1505-1527.
——, 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250-1273.
Weiss, J., 1981: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. La Jolla Inst., LJI-TN-81-121.
Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 3173–3183.
——, and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543-549.
——, J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411.
Wimmers, A. J. and C. S. Velden, 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 2013–2034
Zhou, X., and B. Wang, 2009: From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model. Geophys. Res. Letts., 36, L03802, doi:10.1029/2008GL036854.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔