(3.226.72.118) 您好!臺灣時間:2021/05/12 07:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張詠淇
研究生(外文):Yung-Chi Chang
論文名稱:在成年雄鼠下視丘-腦下垂體系統中研究Synapsin Ia 調控神經胜肽的釋放所扮演的角色
論文名稱(外文):The Role of Synapsin Ia in Regulating Neuropeptide Release from the Hypothalamic-Neurohypophysial System of Adult Male Rats
指導教授:王致恬
指導教授(外文):Chih-Tien Wang
口試委員:周申如徐立中陳示國盧主欽
口試委員(外文):Shen-Ju ChouLi-Chung HsuShih-Kuo ChenJuu-Chin Lu
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:124
中文關鍵詞:synapsin下視丘-腦下垂體系統催產素血管加壓素large-dense croe vesiclesynaptic vesicle活體電穿孔
外文關鍵詞:synapsinhypothalamic-neurohypophysial systemoxytocinvasopressinlarge-dense core vesiclessynaptic vesiclesin vivo electroporation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
下視丘-腦下垂體系統由magnocellular neurons (MCNs)所組成,製造神經傳導物質(催產素和血管加壓素),分別沿著神經元的樹突釋放到腦脊髓液中或是沿著軸突釋放都周邊血液系統中。在下視丘-腦下垂體系統中有兩種囊泡包裹神經傳導物質,分別是large-dense core vesicles (LDCVs)和microvesicles (MVs)。先前研究指出一種弱鈣離子感應蛋白-Synaptotagmin IV (Syt IV)表現在LDCVs和MVs中,並且參與鈣離子調控性胞吐作用。然而在下視丘-腦下垂體系統中,MVs不論在大小、型態和分子組成上與其他神經組織中的synaptic vesicles (SVs)相類似,但MVs其包裹的神經傳導物質和在下視丘-腦下垂體系統中的功能尚未了解。因此,我們假設在成年雄鼠的下視丘-腦下垂體系統中,一種SV/MV的蛋白-Synapsin Ia (Syn Ia)可能會影響神經胜肽從LDCVs中釋放。首先,我們利用免疫螢光染色,可以觀察到Syn Ia在視上核和腦下腺後葉的表現不會和包覆在LDCVs中的催產素和血管加壓素重疊,證明Syn Ia 是在MVs中表現。接著,我們利用活體電穿孔方式,將不同種的DNA轉染到視上核中。轉染的DNA種類包含Syt I、 Syt IV、wild-type Syn Ia和仿效無法被磷酸化的Syn Ia (Syn Ia-S62A). 我們利用酵素連結免疫吸附試驗,來偵測催產素和血管加壓素在腦脊髓液和周邊血液中的濃度,因為轉染不同種DNA而造成的影響。研究結果顯示,Syn Ia 促進催產素在腦脊髓液和周邊血液中的含量增加,並且這個情形會因為Syn Ia-S62A而反轉。當共同轉染Syt IV和Syn Ia時,仍然會增加催產素在腦脊髓液和周邊血液中的含量,並且一樣會被共同轉染Syt IV 和Syn Ia-S62A反轉。因此,證明Syn Ia是藉由第62個胺基酸的位置磷酸化與否來調控催產素在腦脊髓液和周邊血液中的釋放。另一方面,血管加壓素釋放到腦脊髓液和周邊血液中,也是藉由Syn Ia第62個胺基酸的位置磷酸化來調控。此外,鈣離子感應蛋白-Syt I會增加血管加壓素在周邊血液的釋放量,並且會被Syt IV所反轉。綜合上述,可以得知在下視丘-腦下垂體系統中,Syn Ia調控催產素和血管加壓素的釋放是藉由第62個胺基酸的位置磷酸化與否,並且仿效無法被磷酸化的Syn Ia會抑制MV/SV的傳遞,來調控LDCVs的釋放。

The magnocellular neurons (MCNs) of hypothalamic neurohypophysial system (HNS) release neuropeptides (oxytocin, OT; vasopressin, VP) into the cerebrospinal fluid (CSF) and peripheral plasma from their somatodendrites and axonal terminals, respectively. The vesicles in the HNS fall into two distinct classes, neuropeptide-laden large-dense core vesicles (LDCVs) and microvesicles (MVs). A previous study suggested that a poor Ca2+ sensor protein, synaptotagmin IV (Syt IV), localizes to both classes of vesicles and alters Ca2+-regulated exocytosis of both vesicles. Although MVs are similar to synaptic vesicles (SVs) in size, morphology and molecular composition, their contents and functions in the HNS remain unknown. Here, we examined whether a SV/MV protein, synapsin Ia (Syn Ia), may participate in regulation of neuropeptide release from LDCVs in the HNS of adult male Sprague-Dawley rats. We found that Syn Ia did not colocalize with either oxytocin (OT) or vasopressin (VP)-containing LDCVs in the MCNs or pituitary nerve terminals, suggesting that Syn Ia localizes to SVs/MVs exclusively. To determine the role of SVs/Syn Ia in HNS, we conducted molecular perturbation by in vivo electroporation to unilaterally transfect supraoptic nucleus with various DNA plasmids, including Syt I, Syt IV, wild-type Syn Ia, and its phospho-deficient mutant (Syn Ia-S62A) to abolish SV/MV recruitment to plasma membrane. Sham control was the vector carrying the transfection marker EGFP. To detect the OT/VP changes following various molecular perturbations, CSF and plasma were collected for ELISA measurements before and after in vivo electroporation. Syn Ia significantly increased the OT levels in CSF/plasma, while Syn Ia-S62A did not alter the OT levels in CSF/plasma. Furthermore, cotransfecting Syt IV and Syn Ia also increased the OT levels in CSF/plasma, while this effect was abolished by cotransfecting Syt IV and Syn Ia-S62A. These results suggest that the defective S62 phosphorylation may abolish the Syn Ia-enhanced OT central/peripheral release. Transfection of Syn Ia alone, or Syn Ia together with Syt IV also increased the VP levels in CSF, and this Syn Ia-enhanced VP central release was abolished by defective S62 phosphorylation. In addition, Syn Ia significantly increased the VP levels in plasma, while Syn Ia-S62A slightly decreased the VP levels in plasma. Moreover, the functional Ca2+ sensor protein, Syt I, significantly increased the VP levels in plasma, while Syt IV (harboring a natural mutation in its C2A Ca2+ binding site) did not alter the VP levels in plasma. However, cotransfecting Syt IV and Syn Ia still increased the VP levels in plasma, while this effect was abolished by cotransfecting Syt IV and Syn Ia-S62A. Thus, even though cotransfection with the poor Ca2+ sensor protein Syt IV, Syn Ia was sufficient to enhance VP peripheral release. Taken together, the defective S62 phosphorylation may abolish the Syn Ia-enhanced neuropeptide central/peripheral release. Given that this Syn Ia phosphodeficient mutant blocks SV/MV recruitment, our results suggest that SV/MV recruitment to plasma membrane may facilitate the trafficking and fusion of the other class of vesicles, LDCVs, in the HNS.

口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Abbreviations viii
Contents xi
Chapter I Introduction 1
1.1 Neurotransmitter release 1
1.2 Large dense-core vesicles and synaptic vesicles 2
1.3 Hypothalamic-Neurohypophysial System 2
1.3.1 Oxytocin and Vasopressin 3
1.3.2 HNS with Central Release and Peripheral release 4
1.3.3 HNS and Microvesicles 5
1.3.4 HNS and MAPK pathway 5
1.4 Synaptotagmin 6
1.4.1 Synaptotagmin I 7
1.4.2 Synaptotagmin IV 8
1.5 Synapsin 10
1.5.1 Synapsin Ia and Phosphorylation 11
1.6 In vivo electroporation 13
1.7 The Purpose of This Study 14
Chapter II Materials and Methods 15
2.1 Animals 15
2.2 DNA Plasmids Construction and Amplifications 15
2.3 Homemade electrodes 18
2.4 Stereotaxic Surgery and In Vivo Electroporation 18
2.5 Heart Perfusion and Tissue fixation 19
2.6 Cryosection 21
2.7 Immunofluorescence chemistry (IFC) 22
2.8 Collection of Plasma and Cerebrospinal Fluid 24
2.9 Enzyme-Linked Immunosorbent Assay (ELISA) 24
2.10 Statistics 26
2.10.1 The OT/ VP and Body Weight Measurement 26
2.10.2 The changes in fluorescence after in vivo electroporation 26
Chapter III Results 27
3.1 Syn I localizes to the somata of SON neurons and posterior pituitary nerve terminals 27
3.2 Syn I is expressed within the somata of SON neurons and posterior pituitary nerve terminals 28
3.3 Syn I colocalizes with the synaptophysin neurons of SON and pituitary nerve terminals 29
3.4 Syn I is expressed in the OT neurons of SON and OT nerve terminals of posterior pituitary 30
3.5 Syt IV is expressed in the OT neurons of SON and the OT nerve terminals of posterior pituitary 31
3.6 Syn I is expressed in the VP neurons of SON and the VP nerve terminals of posterior pituitary 32
3.7 Syt IV is expressed in the VP neurons of SON and the VP nerve terminals of posterior pituitary 33
3.8 Syt IV or Syn Ia is successfully transfected into the SON by in vivo electroporation 33
3.9 Syt IV or Syn Ia is successfully transfected in the posterior pituitary nerve terminals by in vivo electroporation 35
3.10 Syn Ia regulates the OT central release by phosphorylation of S62 37
3.11 Syn Ia regulates the OT peripheral release by phosphorylation of S62 40
3.12 Syn Ia regulates the VP central release by phosphorylation site of S62 44
3.13 Syn Ia regulates the VP peripheral release by phosphorylation of S62 48
3.14 The rat body weight is not changed by overexpressing Syts, wild-type Syn Ia or phosphodeficient Syn Ia 52
Chapter IV Discussion 60
4.1 The role of Syn Ia in regulating LDCVs exocytosis in the HNS 60
4.2 Syn Ia regulates the OT central release, but not significantly affects the VP central release 61
4.3 The role of Syt IV in regulating the neuropeptide release 63
4.4 The OT concentration in plasma after in vivo electroporation is increased in all groups except the Syn Ia* group 64
4.5 Body weight and neuropeptides release 64
4.6 Future Directions 65
Chapter V Conclusion 67
References 68
List of Figures 76
Figure 1. SNARE complex and Synaptotagmin 76
Figure 2. Hypothalamic-Neurohypophysial System 77
Figure 3. Oxytocin and vasopressin are expressed in SON and PVN 78
Figure 4. Large dense-core vesicles and microvesicles in the HNS 79
Figure 5. The Ca2+ binding sites in Synaptotagmin I and Synaptotagmin IV 80
Figure 6. Molecular interaction and phosphorylation of Synapsin I. 81
Figure 7. Homemade electrodes for in vivo electroporation 82
Figure 8. Stereotaxic surgery and in vivo electroporation 83
Figure 9. SON is the target for DNA transfection 84
Figure 10. Syn I immunoreactivity in the somata and axon terminals of SON neurons 85
Figure 11. Syn I localizes to Synaptophysin in the SON neurons and pituitary nerve terminals 87
Figure 12. Syt IV and Syn I localize to OT neurons in the SON neurons and pituitary nerve terminals 88
Figure 13. Syt IV and Syn I localize to VP neurons in the SON neurons and pituitary nerve terminals 90
Figure 14. HA-Syt IV is expressed in the transfected side of SON after in vivo electroporation 92
Figure 15. Myc-Syn Ia is expressed in the transfected side of SON after in vivo electroporation 94
Figure 16. The overexpression levels of Syt IV or Syn Ia in SON after in vivo electroporation 96
Figure 17. Syt IV and Syn I is expressed in the pituitary after in vivo electroporation 97
Figure 18. The changed OT levels in CSF and plasma after transfection 99
Figure 19. The changed VP levels in CSF and plasma after transfection. 101
Figure 20. The body weight in the transfected rats used for measuring OT in CSF and plasma 103
Figure 21. The body weight in the transfected rats used for measuring VP in CSF and plasma 105
Figure 22. The role of Syn Ia or Syt I in regulating central and peripheral release in HNS 107
Figure 23. The role of Syn Ia in regulating LDCVs exocytosis in the HNS 108
List of Tables 109
Table 1. The list of primary antibodies and secondary antibodies 109
Table 2. The list of OT concentration in CSF 110
Table 3. The list of OT concentration in plasma 111
Table 4. The list of VP concentration in CSF 112
Table 5. The list of VP concentration in plasma 113
Table 6. The list of OT changes in CSF and plasma 114
Table 7. Compare groups of OT changes in CSF 115
Table 8. Compare groups of OT changes in plasma 116
Table 9. The list of VP changes in CSF and plasma 117
Table 10. Compare groups of VP changes in CSF 118
Table 11. Compare groups of VP changes in plasma 119
Appendix 120
The 2012 annual meeting of the Society for Neuroscience (New Orleans, Louisiana, U.S.A. 10/13-17/2011): abstract and poster 120
The 2013 College of Life Science Poster (National Taiwan University, Taipei, Taiwan 6/7/2013): abstract and poster 123


Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nature biotechnology 16:867-870.
Akaneya Y, Jiang B, Tsumoto T (2005) RNAi-induced gene silencing by local electroporation in targeting brain region. Journal of neurophysiology 93:594-602.
Ashford JW, Soultanian NS, Zhang SX, Geddes JW (1998) Neuropil threads are collinear with MAP2 immunostaining in neuronal dendrites of Alzheimer brain. Journal of neuropathology and experimental neurology 57:972-978.
Bergquist F, Ludwig M (2008) Dendritic transmitter release: a comparison of two model systems. Journal of neuroendocrinology 20:677-686.
Blume A, Bosch OJ, Miklos S, Torner L, Wales L, Waldherr M, Neumann ID (2008) Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. The European journal of neuroscience 27:1947-1956.
Bommert K, Charlton MP, DeBello WM, Chin GJ, Betz H, Augustine GJ (1993) Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363:163-165.
Burbach JP, Luckman SM, Murphy D, Gainer H (2001) Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiological reviews 81:1197-1267.
Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Progress in neurobiology 91:313-348.
Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nature reviews Molecular cell biology 3:498-508.
Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annual review of biochemistry 77:615-641.
Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Medical & biological engineering & computing 44:5-14.
Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, Huang PC, Chang YT, Chang PY, Wang CT (2012) Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PloS one 7:e47465.
Coll AP, Farooqi IS, O''Rahilly S (2007) The hormonal control of food intake. Cell 129:251-262.
Consiglio AR, Lucion AB (2000) Technique for collecting cerebrospinal fluid in the cisterna magna of non-anesthetized rats. Brain research Brain research protocols 5:109-114.
De Camilli P, Cameron R, Greengard P (1983a) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. The Journal of cell biology 96:1337-1354.
De Camilli P, Harris SM, Jr., Huttner WB, Greengard P (1983b) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. The Journal of cell biology 96:1355-1373.
Di Scala-Guenot D, Strosser MT, Richard P (1987) Electrical stimulations of perifused magnocellular nuclei in vitro elicit Ca2+-dependent, tetrodotoxin-insensitive release of oxytocin and vasopressin. Neuroscience letters 76:209-214.
DiAntonio A, Parfitt KD, Schwarz TL (1993) Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell 73:1281-1290.
Elferink LA, Peterson MR, Scheller RH (1993) A role for synaptotagmin (p65) in regulated exocytosis. Cell 72:153-159.
Ferguson GD, Anagnostaras SG, Silva AJ, Herschman HR (2000a) Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proceedings of the National Academy of Sciences of the United States of America 97:5598-5603.
Ferguson GD, Chen XN, Korenberg JR, Herschman HR (2000b) The human synaptotagmin IV gene defines an evolutionary break point between syntenic mouse and human chromosome regions but retains ligand inducibility and tissue specificity. The Journal of biological chemistry 275:36920-36926.
Fernandez I, Arac D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Sudhof TC, Rizo J (2001) Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057-1069.
Ferraro B, Cruz YL, Coppola D, Heller R (2009) Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing. Molecular therapy : the journal of the American Society of Gene Therapy 17:651-657.
Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191-193.
Flier JS, Maratos-Flier E (1998) Obesity and the hypothalamus: novel peptides for new pathways. Cell 92:437-440.
Fukuda M, Moreira JE, Lewis FM, Sugimori M, Niinobe M, Mikoshiba K, Llinas R (1995) Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proceedings of the National Academy of Sciences of the United States of America 92:10708-10712.
Gainer H (2012) Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. Journal of neuroendocrinology 24:528-538.
Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717-727.
Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289-292.
Hayashi T, Soulie F, Nakata T, Hirokawa N (1994) Redistribution of synapsin I and synaptophysin in response to electrical stimulation in the rat neurohypophysial nerve endings. Cell structure and function 19:253-262.
Ho JM, Blevins JE (2013) Coming full circle: contributions of central and peripheral oxytocin actions to energy balance. Endocrinology 154:589-596.
Huttner WB, DeGennaro LJ, Greengard P (1981) Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. The Journal of biological chemistry 256:1482-1488.
Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. The Journal of cell biology 96:1374-1388.
Jen HI (2011) The study of the role of synaptotagmin and synapsin Ia in the oxytocin and vasopressin release from hypothalamic-neurohypophysial system by in vivo electroporation. Master Thesis.
Jin D et al. (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41-45.
Johnson EM, Ueda T, Maeno H, Greengard P (1972) Adenosine 3'',5-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. The Journal of biological chemistry 247:5650-5652.
Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC, Jr., Greengard P, Czernik AJ (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:7944-7953.
Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proceedings of the National Academy of Sciences of the United States of America 93:3679-3683.
Jurek B, Slattery DA, Maloumby R, Hillerer K, Koszinowski S, Neumann ID, van den Burg EH (2012) Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats. PloS one 7:e37060.
Kao CW (2011) Establishment of an in vivo electroporation thechnique to study the role of Synaptotagmin in the hypothalamic-neurohypophysial system. Master Thesis.
Kao HT, Porton B, Hilfiker S, Stefani G, Pieribone VA, DeSalle R, Greengard P (1999) Molecular evolution of the synapsin gene family. The Journal of experimental zoology 285:360-377.
Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P (1998) A third member of the synapsin gene family. Proceedings of the National Academy of Sciences of the United States of America 95:4667-4672.
Kiyama H, Emson PC (1990) Evidence for the co-expression of oxytocin and vasopressin messenger ribonucleic acids in magnocellular neurosecretory cells: simultaneous demonstration of two neurohypophysin messenger ribonucleic acids by hybridization histochemistry. Journal of neuroendocrinology 2:257-259.
Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89-92.
Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553-566.
Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in neuroendocrinology 25:150-176.
Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ (1993) Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 74:1125-1134.
Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nature reviews Neuroscience 7:126-136.
Luo J, Ju MJ, Redies C (2006) Regionalized cadherin-7 expression by radial glia is regulated by Shh and Pax7 during chicken spinal cord development. Neuroscience 142:1133-1143.
Mason WT, Hatton GI, Ho YW, Chapman C, Robinson IC (1986) Central release of oxytocin, vasopressin and neurophysin by magnocellular neurone depolarization: evidence in slices of guinea pig and rat hypothalamus. Neuroendocrinology 42:311-322.
Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. The Journal of biological chemistry 271:21108-21113.
Matsunaga W, Miyata S, Kiyohara T (1999) Redistribution of MAP2 immunoreactivity in the neurohypophysial astrocytes of adult rats during dehydration. Brain research 829:7-17.
Matthew WD, Tsavaler L, Reichardt LF (1981) Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. The Journal of cell biology 91:257-269.
Mezey E, Kiss JZ (1991) Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129:1814-1820.
Mikoshiba K, Fukuda M, Moreira JE, Lewis FM, Sugimori M, Niinobe M, Llinas R (1995) Role of the C2A domain of synaptotagmin in transmitter release as determined by specific antibody injection into the squid giant synapse preterminal. Proceedings of the National Academy of Sciences of the United States of America 92:10703-10707.
Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckel ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. The Journal of endocrinology 102:63-72.
Mori Y, Fukuda M (2011) Synaptotagmin IV acts as a multi-functional regulator of Ca2+-dependent exocytosis. Neurochemical research 36:1222-1227.
Morris JF, Nordmann JJ, Dyball RE (1978) Structure-function correlation in mammalian neurosecretion. International review of experimental pathology 18:1-95.
Navone F, Greengard P, De Camilli P (1984) Synapsin I in nerve terminals: selective association with small synaptic vesicles. Science 226:1209-1211.
Navone F, Di Gioia G, Jahn R, Browning M, Greengard P, De Camilli P (1989) Microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of presynaptic nerve terminals. The Journal of cell biology 109:3425-3433.
Nirogi R, Kandikere V, Mudigonda K, Bhyrapuneni G, Muddana N, Saralaya R, Benade V (2009) A simple and rapid method to collect the cerebrospinal fluid of rats and its application for the assessment of drug penetration into the central nervous system. Journal of neuroscience methods 178:116-119.
Nonet ML, Grundahl K, Meyer BJ, Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291-1305.
Onaka T (2004) Neural pathways controlling central and peripheral oxytocin release during stress. Journal of neuroendocrinology 16:308-312.
Onaka T, Takayanagi Y, Yoshida M (2012) Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. Journal of neuroendocrinology 24:587-598.
Park Y, Kim KT (2009) Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Cellular signalling 21:1465-1470.
Porton B, Kao HT, Greengard P (1999) Characterization of transcripts from the synapsin III gene locus. Journal of neurochemistry 73:2266-2271.
Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32:435-439.
Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nature biotechnology 16:168-171.
Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55-63.
Saland LC, Thomas D, Morales M, Gaddy J (1998) Synaptophysin immunoreactivity in the rat pituitary: alterations after 6-hydroxydopamine treatment. Endocrine 9:201-206.
Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Human gene therapy 16:1194-1201.
Schwartz MW, Woods SC, Porte D, Jr., Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661-671.
Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318-324.
Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76:142-159.
Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P, et al. (1989) Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474-1480.
Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-353.
Suzuki T, Shin BC, Fujikura K, Matsuzaki T, Takata K (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS letters 425:436-440.
Takasugi Y, Shirai T, Futagawa K, Koga Y, Egawa K, Watanabe S, Umeda T (2005) Transcutaneous cisternal puncture for sampling of cerebrospinal fluid in awake rat. Experimental animals / Japanese Association for Laboratory Animal Science 54:193-196.
Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochimica et biophysica acta 1088:131-134.
Tobin V, Leng G, Ludwig M (2012) The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Frontiers in physiology 3:261.
Tucker WC, Chapman ER (2002) Role of synaptotagmin in Ca2+-triggered exocytosis. The Biochemical journal 366:1-13.
Ubach J, Zhang X, Shao X, Sudhof TC, Rizo J (1998) Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? The EMBO journal 17:3921-3930.
Ueda T, Maeno H, Greengard P (1973) Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3'':5''-monophosphate. The Journal of biological chemistry 248:8295-8305.
Ulfig N, Nickel J, Bohl J (1998) Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain. Cell and tissue research 291:433-443.
Valente P, Casagrande S, Nieus T, Verstegen AM, Valtorta F, Benfenati F, Baldelli P (2012) Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF. The Journal of neuroscience : the official journal of the Society for Neuroscience 32:5868-5879.
Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR (1995) Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proceedings of the National Academy of Sciences of the United States of America 92:2164-2168.
von Poser C, Ichtchenko K, Shao X, Rizo J, Sudhof TC (1997) The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. The Journal of biological chemistry 272:14314-14319.
Walch-Solimena C, Takei K, Marek KL, Midyett K, Sudhof TC, De Camilli P, Jahn R (1993) Synaptotagmin: a membrane constituent of neuropeptide-containing large dense-core vesicles. The Journal of neuroscience : the official journal of the Society for Neuroscience 13:3895-3903.
Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, Chapman ER, Jackson MB (2001) Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294:1111-1115.
Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943-947.
Wang H, Ko CH, Koletar MM, Ralph MR, Yeomans J (2007) Casein kinase I epsilon gene transfer into the suprachiasmatic nucleus via electroporation lengthens circadian periods of tau mutant hamsters. The European journal of neuroscience 25:3359-3366.
Yamagata Y (2003) New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. Journal of pharmacological sciences 93:22-29.
Zhang G, Bai H, Zhang H, Dean C, Wu Q, Li J, Guariglia S, Meng Q, Cai D (2011) Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69:523-535.
Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB (2009) Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nature neuroscience 12:163-171.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔