跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林庭如
研究生(外文):Ting-Ju Lin
論文名稱:化學氣相沉積共聚合法製備多功能性聚對二甲苯鍍膜及其特性分析
論文名稱(外文):Vapor-Based Synthesis and Characterizations of Multi-Functional Poly-p-xylylene Coatings
指導教授:陳賢燁
口試委員:張志豪游佳欣蔡偉博
口試日期:2013-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:生物界面表面改質化學氣相沉積共聚合技術功能性聚對二甲苯鍍膜生物耦合反應
外文關鍵詞:Biointerface SurfaceModificationFunctionalizedpoly(p-xylylene)CVD copolymerizationBioconjugation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用各式各樣官能化的對二甲苯二聚體,利用化學氣相沉積共聚合系統來製備功能性聚對二甲苯鍍膜,而為了因應生物環境多種不同生物分子的鍵結,我們發展出多功能性聚對二甲苯鍍膜於生物界面改質上之應用,使之更符合生物環境並達到更複雜之生物領域應用。
在單功能性聚對二甲苯鍍膜上,我選擇了共聚(4-苯甲醯對二甲苯-對二甲苯)來進行光反應,此官能基特點在於生物分子不須有特定官能基便能透過光反應與CH-以及NH-產生鍵結,利用這個特性我製作了抗結垢表面並以蛋白質吸附試驗證實其成功,並製作抗菌表面且以生物膜培養來驗證其效果,最後利用FTIR來證實其生物鍵結的效果。同時,在單功能性聚對二甲苯鍍膜裡,我也選擇了共聚(4-乙烯基對二甲苯-對二甲苯)以及共聚(4-馬來醯亞胺基甲基對二甲苯-對二甲苯)來和帶有巰(thiol)官能基的生物分子進行反應,並進行MTT Assay細胞存活率分析測試來驗證鍵結效果且比較兩個反應之差異。而在多功能性聚對二甲苯鍍膜上,首先在雙功能性聚對二甲苯鍍膜,我們同時利用在表面上具有的兩種官能基進行“click”反應接上不同生物分子,並進行細胞培養實驗,證實可以在同一表面上鍵結上兩種不同生物分子。最後我從各式各樣官能化的對二甲苯二聚體中選擇了三種,利用實驗室的三向化學氣向沉積共聚合系統製備三功能性聚對二甲苯鍍膜,利用FTIR以及XPS來檢測其成功合成,且利用螢光顯微鏡去證實螢光分子在生物耦合技術下鍵結的效果,證實在上面的三種官能基可以各別進行生物耦合反應且不互相影響,再利用FTIR分析來證明鍵結成功。
最後我期許這些功能性聚對二甲苯鍍膜能更有效的利用在生物領域的應用上,像是生物感測器、診斷儀器、植入性儀器等之應用。


We used a straightforward process for the fabrication of a functional poly(p-xylylene) polymer coating via CVD copolymerization process from substituted [2,2]paracyclophanes. For the unique selective bioconjugtions, it can control the covalence of biomolecules and can apply in biology fields such as provide a more sophisticated mimicry of surface engineering for advanced biomaterials design.
For the monofunctional poly(p-xylylene) polymer coating, We choosed a photodefinable polymer, poly(4-benzoyl-p-xylylene-co-p-xylylene), the photoactivated carbonyl groups of the polymer has the potential to enable light-induced cross-linking of molecules and can rapidly react via insertion into CH- or NH- bonds upon photo-illumination at 340 nm. Importantly, the process does not require any additional functional groups on the antifouling materials. Molecules including poly(ethylene glycol) (PEG; average Mn = 400), poly(ethylene glycol) methyl ether methacrylate (PEGMA), dextran, and ethanolamine are used in the study without further modification. The resulting antifouling properties are examined by conducting protein adsorption on surfaces. infrared reflection absorption spectroscopy (IRRAS) have confirmed the characteristics of the immobilizations of these fouling materials. Furthermore, we also used poly(4-benzoyl-p-xylylene-co-p-xylylene) to immobilize of antibacterial molecules, chlorhexidine(CHX), and the resulting are examined by biofilm experiment. In addition, we choosed two monofunctional poly(p-xylylene) polymers , poly(4-vinyl-p-xylylene-co-p-xylylene) and poly(4-N-maleimidomethyl-p-xylylene- co-p-xylylene), which both can react with thiol functional group. We examined and compared these thiol reactions by MTT Assay cell viability analysis.
For the multifunctional poly(p-xylylene) polymer coating, We fabricate the bi-functional poly(p-xylylene) polymer coating, poly[(4-N-maleimidomethyl-p-
xylylene)-co-(4-methyl-propiolate-p-xylylene)-co-(p-xylylene)], which is compatible with the simultaneous presentation of multiple biomolecules, and we examined these bioorthogonal reactions by cell culture experiment. In this communication, we extended the concept of chemical vapor deposition copolymerization to three distinct feeding sources of starting materials, thereby establishing a versatile and simple avenue toward tri-functional coatings, poly[(4-ethynyl-p-xylylene)-co-(4-N-maleimidomethyl-
p-xylylene)-co-(trifluoroacetyl-p-xylylene)-co-(p-xylylene)]. FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to characterize the chemical structure and composition of this novel coating. Alexa Fluor-555 azide, fluorescein (FITC)-labeled cysteine, and Alexa Fluor-350 hydrazide were selected as model reporter molecules for the according conjugation reactions.
The reported CVD copolymerization technology to prepare multifunctional coatings are not limited to the functionalities reported and are expected to extend to the established library of functional groups including alcohols, benzoyl, ketones, esters, alkenes, and aldehydes, and we foresee the potential uses in microfluidics, cell culture study, diagnostic devices, and implant devices.


誌謝 I
摘要 II
Abstract IV
英文縮寫說明 VII
目錄 XIII
圖目錄 XIII
第一章 研究背景 1
1.1 文獻回顧 1
1.1.1 生物界面改質技術 1
1.1.2 化學氣相沉積共聚合法製備聚對二甲苯鍍膜 3
1.2 研究動機及目的 7
第二章 功能性聚對二甲苯鍍膜製備及特性分析 9
2.1 材料製備 9
2.2 製備官能化對二甲苯二聚體(functionalized [2,2]paracyclophane) 11
2.3 化學氣相沉積共聚合法製備多功能性聚對二甲苯鍍膜 20
2.3.1 單向化學氣相沉積共聚合法製備單功能性聚對二甲苯鍍膜 20
2.3.2 雙向化學氣相沉積共聚合法製備雙功能性聚對二甲苯鍍膜 22
2.3.3 三向化學氣相沉積共聚合法製備三功能性聚對二甲苯鍍膜 24
2.4 多功能性聚對二甲苯鍍膜表面化學結構分析 26
2.4.1 單功能性聚對二甲苯鍍膜 26
2.4.2 雙功能性聚對二甲苯鍍膜 29
2.4.3 三功能性聚對二甲苯鍍膜 31
第三章 功能性聚對二甲苯鍍膜在生物界面改質技術上之應用 36
3.1 單功能性聚對二甲苯鍍膜 36
3.1.1 蛋白質吸附試驗 36
3.1.2 抗菌試驗 42
3.1.3細胞培養試驗 50
3.2雙功能性聚對二甲苯鍍膜 54
3.2.1生物界面耦合技術 54
3.2.2細胞培養試驗 57
3.3三功能性聚對二甲苯鍍膜 59
3.3.1生物界面耦合技術 59
第四章 結論與未來展望 65
參考文獻 67
附錄 71



1.A. Chilkoti, J. A. Hubbell, Biointerface science. Mrs Bulletin 30, 175 (Mar, 2005).
2.A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, S. R. Quake, Nature Biotechnology 17, 1109 (Nov, 1999).
3.C. S. Effenhauser, G. J. M. Bruin, A. Paulus, M. Ehrat, Analytical Chemistry 69, 3451 (Sep 1, 1997).
4.S. H. Chen et al., Electrophoresis 22, 3972 (Oct, 2001).
5.H. B. Mao, T. L. Yang, P. S. Cremer, Analytical Chemistry 74, 379 (Jan 15, 2002).
6.P. C. H. Li, D. J. Harrison, Analytical Chemistry 69, 1564 (Apr 15, 1997).
7.K. M. R. Kallury, W. E. Lee, M. Thompson, Analytical Chemistry 65, 2459 (Sep 15, 1993).
8.S. K. Bhatia, M. J. Cooney, L. C. Shriverlake, T. L. Fare, F. S. Ligler, Sensors and Actuators B-Chemical 3, 311 (Apr, 1991).
9.G. Elender, M. Kuhner, E. Sackmann, Biosensors & Bioelectronics 11, 565 (1996, 1996).
10.A. W. Flounders, D. L. Brandon, A. H. Bates, Biosensors & Bioelectronics 12, 447 (1997, 1997).
11.S. V. Matveev, Biosensors & Bioelectronics 9, 333 (1994, 1994).
12.E. T. Vandenberg et al., Journal of Colloid and Interface Science 147, 103 (Nov, 1991).
13.A. Collioud, J. F. Clemence, M. Sanger, H. Sigrist, Bioconjugate Chemistry 4, 528 (Nov-Dec, 1993).
14.E. Delamarche et al., Langmuir 12, 1997 (Apr 17, 1996).
15.C. Duschl, A. F. SevinLandais, H. Vogel, Biophysical Journal 70, 1985 (Apr, 1996).
16.B. Lu, J. M. Xie, C. L. Lu, C. G. Wu, Y. Wei, Analytical Chemistry 67, 83 (Jan 1, 1995).
17.D. Q. Xiao, M. J. Wirth, Macromolecules 35, 2919 (Apr 9, 2002).
18.D. E. Bergbreiter, G. F. Xu, C. Zapata, Macromolecules 27, 1597 (Mar 14, 1994).
19.H. Chen, G. Belfort, Journal of Applied Polymer Science 72, 1699 (Jun 24, 1999).
20.S. W. Hu et al., Analytical Chemistry 76, 1865 (Apr 1, 2004).
21.S. W. Hu et al., Analytical Chemistry 74, 4117 (Aug 15, 2002).
22.F. C. Loh, K. L. Tan, E. T. Kang, K. G. Neoh, M. Y. Pun, European Polymer Journal 31, 481 (May, 1995).
23.J. Genzer, D. A. Fischer, K. Efimenko, Advanced Materials 15, 1545 (Sep 16, 2003).
24.J. C. Corelli, A. J. Steckl, D. Pulver, J. N. Randall, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 19-20, 1009 (Feb, 1987).
25.G. Decher, Science 277, 1232 (Aug 29, 1997).
26.E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O''Brien, C. B. Murray, Nature 439, 55 (Jan 5, 2006).
27.J. Lahann, Polymer International 55, 1361 (Dec, 2006).
28.J. Lahann, Chemical Engineering Communications 193, 1457 (2006, 2006).
29.S. K. Murthy, B. D. Olsen, K. K. Gleason, Journal of Applied Polymer Science 91, 2176 (Feb 15, 2004).
30.N. L. Dygert, A. P. Gies, K. E. Schriver, R. F. Haglund, Jr., Applied Physics a-Materials Science & Processing 89, 481 (Nov, 2007).
31.K.-R. Lee et al., Macromolecular Rapid Communications 28, 1057 (May 2, 2007).
32.B. A. Grzybowski, R. Haag, N. Bowden, G. M. Whitesides, Analytical Chemistry 70, 4645 (Nov 15, 1998).
33.D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, Analytical Chemistry 70, 4974 (Dec 1, 1998).
34.T. E. Nowlin, D. F. Smith, Journal of Applied Polymer Science 25, 1619 (1980, 1980).
35.M. Herrera-Alonso, T. J. McCarthy, Langmuir 20, 9184 (Oct 12, 2004).
36.J. Lahann, H. Hocker, R. Langer, Angewandte Chemie-International Edition 40, 726 (2001, 2001).
37.J. Lahann, D. Klee, H. Hocker, Macromolecular Rapid Communications 19, 441 (Sep, 1998).
38.J. Lahann, R. Langer, Macromolecules 35, 4380 (May 21, 2002).
39.J. Lahann, R. Langer, Macromolecular Rapid Communications 22, 968 (Aug 30, 2001).
40.H. Nandivada, H. Y. Chen, J. Lahann, Macromolecular Rapid Communications 26, 1794 (Nov 14, 2005).
41.J. Lahann et al., Analytical Chemistry 75, 2117 (May 1, 2003).
42.J. Lahann, I. S. Choi, J. Lee, K. F. Jenson, R. Langer, Angewandte Chemie-International Edition 40, 3166 (2001, 2001).
43.H. Nandivada, H.-Y. Chen, L. Bondarenko, J. Lahann, Angewandte Chemie-International Edition 45, 3360 (2006, 2006).
44.J. Lahann et al., R Langmuir 18, 3632 (Apr 30, 2002).
45.J. Robertus, W. R. Browne, B. L. Feringa, Chemical Society Reviews 39, 354 (2010).
46.M. Mrksich, MRS Bulletin 30, 180 (2005).
47.C. S. Chen, J. L. Alonso, E. Ostuni, G. M. Whitesides, D. E. Ingber, Biophys. Res. Commun. 307, 355 (Jul, 2003).
48.K. Maehana, H. Tani, T. Kamidate, Anal. Chim. Acta 560, 24 (Feb, 2006).
49.H. Kirsebom et al., Macroporous scaffolds based on chitosan and bioactive molecules. J. Bioact. Compat. Polym. 22, 621 (Nov, 2007).
50.K. Park, Y. M. Ju, J. S. Son, K.-D. Ahn, D. K. Han, Journal of Biomaterials Science-Polymer Edition 18, 369 (2007, 2007).
51.C. Yu et al., Analytical Chemistry 75, 1958 (Apr 15, 2003).
52.N. Herzer, C. Haensch, S. Hoeppener, U. S. Schubert, Langmuir 26, 8358 (Jun 1, 2010).
53.C. A. DeForest, B. D. Polizzotti, K. S. Anseth, Nature Materials 8, 659 (Aug, 2009).
54.Y. Elkasabi, H. Y. Chen, J. Lahann, Advanced Materials 18, 1521 (Jun 19, 2006).
55.Y. Elkasabi, M. Yoshida, H. Nandivada, H.-Y. Chen, J. Lahann, Macromolecular Rapid Communications 29, 855 (Jun 17, 2008).
56. T. Posner, Berichte der deutschen chemischen Gesellschaft 38, 646 (1905).
57. A. N. Glazer, Nature 381, 290 (May, 1996).
58.C. E. Hoyle, T. Y. Lee, T. Roper, Journal of Polymer Science Part A: Polymer Chemistry 42, 5301 (2004).
59.K. Griesbaum, Angewandte Chemie International Edition in English 9, 273 (1970).
60. H. Nandivada, X. Jiang, J. Lahann, Advanced Materials 19, 2197 (2007).
61. W. H. Binder, R. Sachsenhofer, Macromolecular Rapid Communications 28, 15 (2007).
62.K. L. Killops, L. M. Campos, C. J. Hawker, Journal of the American Chemical Society 130, 5062 (2008/04/01, 2008).
63. L. M. Campos et al., Macromolecules 41, 7063 (2008/10/14, 2008).
64. A. S. Goldmann et al., Macromolecules 42, 3707 (2009/06/09, 2009).
65.M. W. Jones, M. I. Gibson, G. Mantovani, D. M. Haddleton, Polymer Chemistry 2, 572 (2011).
66. N. Gupta et al., Nat Chem 2, 138 (2010).
67.M. Takwa, N. Simpson, E. Malmström, K. Hult, M. Martinelle, Macromolecular Rapid Communications 27, 1932 (2006).
68.R. D. Little, M. R. Masjedizadeh, O. Wallquist, J. I. McLoughlin, in Organic Reactions. (John Wiley & Sons, Inc., 2004).
69.B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Progress in Polymer Science 31, 487 (2006).
70.J. W. Chan, C. E. Hoyle, A. B. Lowe, M. Bowman, Macromolecules 43, 6381 (2010, 2010).
71. Y. Ishii, S. S. Lehrer, Biophysical Journal 50, 75 (1986).
72.M. J. Roberts, M. D. Bentley, J. M. Harris, Adv. Drug Deliv. Rev. 54, 459 (Jun, 2002).
73. F. M. Veronese, Biomaterials 22, 405 (2001).
74.W. Yuan, J. Yang, P. Kopečková, J. i. Kopeček, Journal of the American Chemical Society 130, 15760 (2008/11/26, 2008).
75.Z. P. Tolstyka, J. T. Kopping, H. D. Maynard, Macromolecules 41, 599 (2008/02/01, 2007).
76.J. Huwyler, D. Wu, W. M. Pardridge, Proceedings of the National Academy of Sciences 93, 14164 (November 26, 1996, 1996).
77. K. G. Patel, J. R. Swartz, Bioconjugate Chemistry 22, 376 (Mar, 2011).
78.D. C. Dieterich, A. J. Link, J. Graumann, D. A. Tirrell, E. M. Schuman, Proceedings of the National Academy of Sciences of the United States of America 103, 9482 (Jun 20, 2006).
79.D. Rabuka, S. C. Hubbard, S. T. Laughlin, S. P. Argade, C. R. Bertozzi, Journal of the American Chemical Society 128, 12078 (Sep, 2006).
80. R. N. Hannoush, N. Arenas-Ramirez, Acs Chemical Biology 4, 581 (Jul, 2009)
81. F. Seela, S. S. Pujari, Bioconjugate Chemistry 21, 1629 (Sep, 2010).
82. T. Yamada et al., Journal of Organic Chemistry 76, 1198 (Mar 4, 2011).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top