跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇桔弘
研究生(外文):Chieh-Hung Su
論文名稱:應用超臨界溶液快速膨脹法進行藥物 Pyrazinamide 與 Metronidazole 之微粒化研究
論文名稱(外文):Study of the RESS Process for Micronization of Pyrazinamide and Metronidazole
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
口試委員:李度蘇至善
口試委員(外文):Tu LeeChie-Shaan Su
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:101
中文關鍵詞:超臨界溶液快速膨脹法晶型轉變微粒化溶離速率吡井羧胺甲硝唑
外文關鍵詞:Rapid expansion of supercritical solutionmicronizationdissolution ratePyrazinamideMetronidazole
相關次數:
  • 被引用被引用:3
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用超臨界溶液快速膨脹法對兩種藥物進行微粒化探討,分別為抗結
核病藥物吡井羧胺 (Pyrazinamide) 與抗生素甲硝唑(Metronidazole) 兩種原料藥
進行微粒化,目的在於藉由縮小藥物顆粒尺寸以及控制結晶特性,以增加其溶離
速率或增加藥物進入生物體內之途徑,最終提升藥物在人體的生物相容性與可用
率。這兩種藥物之原始顆粒相當大,本研究將利用超臨界溶液快速膨脹法進行藥
物微粒化,以縮小顆粒尺寸以及控制結晶型態,來達到上述的目的。
本研究中,使用二氧化碳作為超臨界流體,利用調控不同實驗參數,有如萃
取溫度、萃取壓力、藥物收集瓶溫度以及噴嘴內徑等參數,分析微粒化後的結果,
探討不同實驗參數對藥物顆粒形成的效應,了解各種參數之影響程度,最後可得
知如何達到最佳化操作條件,進而提升微粒化效果。本研究後段將進行溶離速率
實驗,並且參照2013 年美國藥典 [USP 36th, 2013] 規範的設備條件,觀察經過超
臨界溶液快速膨脹法進行微粒化後的藥物,其溶離速率是否提升。
首先在藥物Pyrazinamide 的研究中,原始藥物經過微粒化程序後,藥物粒徑
由80.98 μm 縮小為0.53 μm。在定性分析方面,由FTIR、DSC 與XRD 等儀器觀
察到藥物經由微粒化處理後,藥物並無變質現象發生,但藥物產生晶型轉變且結
晶度下降,在各種實驗條件下可得到不同晶型混合共存。接著比較藥物處理前後
之溶離速率差異,發現RESS 處理過後藥物之溶離速率只有略快於原始藥物,代入
Weibull model 進行回歸後,處理後藥物之溶離速率係數kw 為0.2774 min-1,而原始
藥物物之溶離速率係數kw 為0.2406 min-1,溶離速率約略提升1.153 倍,溶離速率
提升不明顯,造成兩者差異不大的原因可能為壓錠所造成。在進行溶離實驗前,
藥物會進行壓錠,此將影響溶離速率的表現。
在第二個藥物Metronidazole 的研究中,原始藥物之粒徑為76.81 μm,進行微
粒化處理後最小可降為0.47μm。在藥物定性方面,經由FTIR、DSC 與XRD 分析
III
後,發現藥物並無變質現象,晶型也尚未轉變,且藥物結晶度降低許多。在溶離
速率實驗中發現,原始藥物之溶離速率略快於微粒化處理過後之藥物,而經過
Weibull model 回歸後,原始藥物之溶離速率係數kw 為0.5463 min-1,微粒化後藥物
之 kw 為0.4372 min-1,此結果同樣推測可能為壓錠過程所導致,因為相同重量下,
較小藥物顆粒可形成較緻密之藥錠,使得錠劑之表面積可能較小,如此可能影響
溶離速率的表現。

Microniztion of pharmaceutical substances plays a role in the pharmaceutical
industry for enhancing the dissolution rate of the active pharmaceutical ingredients
(APIs) since near 40% of APIs are almost insoluble or slightly soluble in water or
aqueous solution. As a result, the efficiency of oral or injectable drug is limited due to
the low bioavailability. In this study, the rapid expansion of supercritical solution
(RESS) process is applied to improve the dissolution rate of pharmaceutical agents so as
to increase the bioavailability in human body.
In the RESS process, the solid solute was extracted by CO2 which was the
supercritical solvent, and submicron particles were precipitated in the expansion
chamber. The effects of operation parameters, inclusive of extraction temperature (Text),
extraction pressure (Pext), post temperature (Tpost) and the nozzle diameter (DN) were
investigated by the analysis results. The dissolution profile of RESS-processed drugs
will be compared to the originals.
Pyrazinamide particles were formed with a mean particle size of 0.53 μm which
was much smaller than the originals, 80.98 μm. Through RESS process, the polymorph
transformation was found from the FTIR, DSC and XRD results. Also, the crystallinity
of micronized particles decreased. The dissolution rate constants (kw) of original and
RESS-processed drug are 0.2406 and 0.2774, respectively. It was shown that the
RESS-processed pyrazinamide showed a better dissolution behavior than the originals,
but not significant.
The metronidazole particles were micronized from the original mean size of 76.81
μm to a much smaller average size of 0.47μm after the RESS process. Although no
polymorph transformation was found, the crystallinity of RESS-processed
metronidazole diminished. But, the dissolution rate of micronized metronidazole
V
decreased compared to the original agent. This can be explained that the drug before
conducting dissolution rate experiments will be compressed into a tablet, and the
smaller particles formed the dense tablet whose surface area was smaller than the
original drug. Therefore, the micronized metronidazole had a lower dissolution rate
compared to the unprocessed.

目錄
口試委員審定書
誌謝
摘要 ................................................................................................................... II
Abstract ................................................................................................................ IIV
表目錄 ............................................................................................................... VIII
圖目錄 ................................................................................................................. IX
第一章緒論 .................................................................................................................... 1
1-1 超臨界流體簡介 ........................................................................................... 1
1-2 超臨界流體技術與應用 ............................................................................... 2
1-3 藥物微粒化之目的 ....................................................................................... 4
1-4 超臨界流體微粒化技術 ............................................................................... 5
1-4-1 超臨界溶液快速膨脹法 ........................................................................ 6
1-4-2 氣體飽和溶液沉積法 ............................................................................ 7
1-4-3 超臨界反溶劑法 .................................................................................... 7
1-4-4 超臨界流體輔助霧化法 ........................................................................ 8
1-5 研究動機 ..................................................................................................... 10
第二章實驗方法 .......................................................................................................... 15
2-1 實驗藥品 ..................................................................................................... 15
2-1-1 目標藥品 .............................................................................................. 15
2-1-2 其他藥品 .............................................................................................. 15
2-2 實驗裝置 ..................................................................................................... 16
2-3 實驗步驟 ..................................................................................................... 17
2-4 實驗分析方法 ............................................................................................. 18
VII
第三章結果與討論 ...................................................................................................... 32
3-1 Pyrazinamide ............................................................................................... 32
3-1-1 萃取溫度效應 ....................................................................................... 32
3-1-2 萃取壓力效應 ....................................................................................... 32
3-1-3 收集瓶溫度效應 ................................................................................... 34
3-1-4 噴嘴內徑效應 ....................................................................................... 34
3-1-5 定性分析 .............................................................................................. 35
3-1-6 溶離速率測試 ...................................................................................... 38
3-2 Metronidazole .............................................................................................. 39
3-2-1 萃取溫度效應 ...................................................................................... 39
3-2-2 萃取壓力效應 ...................................................................................... 39
3-2-3 收集瓶溫度效應 .................................................................................. 40
3-2-4 噴嘴內徑效應 ...................................................................................... 41
3-2-5 定性分析 .............................................................................................. 41
3-2-6 溶離速率測試 ...................................................................................... 43
第四章結論 .................................................................................................................. 94
第五章參考文獻 .......................................................................................................... 95

Asghari I., Esmaeilzadeh F., Formation of ultrafine deferasirox particles via rapid
expansion of supercritical solution (RESS process) using Taguchi approach,
International Journal of Pharmaceutics, 2012, 149–156
Baseri H., Lotfollahi M. N., Formation of gemfibrozil with narrow particle size
distribution via rapid expansion ofsupercritical solution process (RESS),
Powder Technology, 2013, 677–684.
Bolten D., Turk M., Micronisation of carbamazepine through rapid expansion of
supercriticalsolution (RESS), Journal of Supercritical Fluids, 2012, 32–40
Boonnoun P., Nerome H., Machmudah S., Goto M., Shotipruk A., Supercritical
anti-solvent micronization of chromatography purified marigold lutein using
hexane and ethyl acetate solvent mixture, Journal of Supercritical Fluids, 2013,
15–22
Castro R. A. E., Maria T. M. R., Evora A. O. L., Feiteira J. C., Ramos Silva M., Matos
Beja A., Canotilho J., Eusebio M. E. S., A New Insight into Pyrazinamide
Polymorphic Forms and their Thermodynamic Relationships, Crystal Growth
& Design, 2010, 274-282
Chan H.K., Kwok P.C.L., Production methods for nanodrug particles using the
bottom-up approach, Advanced Drug Delivery Reviews, 2011, 406-416
Cherukuvada S., Thakuria R., Nangia A., Pyrazinamide Polymorphs: Relative
Stability and Vibrational Spectroscopy, Crystal Growth & Design, 2010,
3931-3941
Chiang H-Y., Dispersion of Ultra-Fine Pharmaceutical Particles with Rapid
Expansion Supercritical Solution Method, NTUST Master''s Thesis, 2011
Chen C-R., Honga S-E., Wang Y-C., Hsu S-L., Hsiange D., Chang C-M., Preparation
of highly pure zeaxanthin particles from sea water-cultivated microalgae using
96
supercritical anti-solvent recrystallization, Bioresource Technology, 2012
828–831
Chen C., Zhan S.P., Zhang M.M., Liu Z.J., Li Z.Y., Preparation of poly(L-lactide)
microparticles by a supercritical antisolvent process with a mixed solvent,
Journal of Applied Polymer Science, 2012, 3744-3750
Cho Y.C., Cheng J.H., Hsu S.L., Hong S.E., Lee T.M., Chang C.M.J., Supercritical
carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly
recovered by elution chromatography from Nannochloropsis oculata,
Separation and Purification Technology, 2011, 274-280
De la Puente M.L., Soto-Yarritu P.L., Burnett J., Supercritical fluid chromatography in
research laboratories: Design, development and implementation of an efficient
generic screening for exploiting this technique in the achiral environment,
Journal of Chromatography A, 2011, 8551-8560
De Marco I., Reverchon E., Nanostructured cellulose acetate filaments produced by
supercritical antisolvent precipitation, Journal of Supercritical Fluids, 2011,
1095-1103
De Paz E., Martin A., Duarte C.M.M., Cocero M.J., Formulation of beta-carotene
with poly-(epsilon-caprolactones) by PGSS process, Powder Technology,
2012, 77-83
Dias A.M.A., Braga M.E.M., Seabra I.J., de Sousa H.C., Supercritical Solvent
Impregnation of Natural Bioactive Compounds in N-Carboxybutylchitosan
and Agarose Membranes for the Development of Topical Wound Healing
Applications, Lecture Notes in Computational Vision and
Biomechanics, 2012, 243-266
Eerdenbrugh B. V., den Mooter G. V., Augustijns P., Top-down production of drug
nanocrystals: Nanosuspension stabilization,miniaturization and transformation
97
into solid products, International Journal of Pharmaceutics, 2008, 64–75
Foster N. R., CharoenchaitrakoolM., DehghaniF., Chan H. K., Micronization by
Rapid Expansion of Supercritical Solutions toEnhance the Dissolution Rates
of Poorly Water-Soluble Pharmaceuticals, Industrial & Engineering Chemistry
Research, 2000, 4794-4802
Gao Z.M., Mathematical Modeling of Variables Involved in Dissolution Testing,
Journal of Pharmaceutical Sciences, 2011, 4934-4942
He S., Zhou B., Zhang S., Lei Z. and Zhang Z., Preparation of nanoparticles of
Magnolia bark extract by rapid expansion from supercritical solution into
aqueous solutions, Journal of Microencapsulation, 2011, 183–189
Hezave A.Z., Esmaeilzadeh F., The effects of RESS parameters on the diclofenac
particle size, Advanced Powder Technology, 2011, 587-595
Hezave A.Z., Esmaeilzadeh F., Recrystallization of Microparticles of Fenoprofen
Using Rapid Expansion of Supercritical Solution, Journal of Dispersion
Science and technology, 2012, 1106-1115
Hezave A.Z., Esmaeilzadeh F., Fabrication of Micron Level Particles of Amoxicillin
by Rapid Expansion of Supercritical Solution, Journal of Dispersion Science
and technology, 2012, 1419-1428
Hiendrawan S., Veriansyah B., Tjandrawinata R. R., Micronization of fenofibrate by
rapid expansion of supercritical solution, Journal of Industrial and Engineering
Chemistry,2013
Keshavarz A., Karimi-Sabet J., Fattahi A., Golzary A., Rafiee-Tehrani M., Dorkoosh
F.A., Preparation and characterization of raloxifene nanoparticles using Rapid
Expansion of Supercritical Solution (RESS), Journal of Supercritical Fluids,
2012, 169-179
Kikic I., Alessi P., Eva F., Moneghini M., Perissutti B., Supercritical antisolvent
98
precipitation of atenolol: The influence of the organic solvent and of the
processing approach, Journal of Supercritical Fluids, 2006, 434-441
Lee B-M., Kim D-S., Lee Y-H., Lee B-C., Kim H-S., Kim H-Y., Lee Y-W.,
Preparation of submicron-sized RDX particles by rapid expansion of solution
using compressed liquid dimethyl ether, Journal of Supercritical Fluids, 2011,
251–258
Lin P.-C.,Su C.-S., Tang M., Chen Y.-P., Micronization of tolbutamide using rapid
expansionof supercritical solution with solid co-solvent(RESS-SC) process,
Research on Chemical Intermediates, 2011, 153–163
Lin P.-C.,Su C.-S., Tang M., Chen Y.-P.,Micronization of ethosuximide using the
rapid expansion of supercriticalsolution (RESS) process, Journal of
Supercritical Fluids, 2012, 84– 89
Liu G-T., Nagahama K., Application of Rapid Expansion of Supercritical Solutions in
the Crystallization Separation, Industrial & Engineering Chemistry Research,
1996, 4626-4634
Mahfouz NM, Hassan MA. 2001. Synthesis, chemical and enzymatichydrolysis, and
bioavailability evaluation in rabbits ofmetronidazole amino acid ester prodrugs
withenhanced watersolubility. Journal of Pharmacy and Pharmacology, 2001,
841–848.
Merck index, 12th edition 1996
Montes A., Bendel A., Kurti R., Gordillo M.D., Pereyra C., de la Ossa E.J.M.,
Processing naproxen with supercritical CO2, Journal of Supercritical Fluids,
2013, 21–29
Muller R.H., JacobsC., Kayser O., Nanosuspensions as particulate drug formulations
in therapy Rationale for development and what we can expect for the future,
Advanced Drug Delivery Reviews, 2001, 3–19
99
Pourasghar M., Fatemi S., Vatanara A., Najafabadi A. R., Production of ultrafine drug
particles through rapid expansion of supercritical solution; a statistical
approach, Powder Technology, 2012, 21–26
Ramukutty S., Jeyasudha R., Ramachandran E., Mechanical and thermal studies of
metronidazole crystals, Indian Journal of Physics, 2013
Reverchon E., SenatoreF., Isolation of Rosemary Oil: Comparison between
Hydrodistillation and Supercritical CO2 Extraction, Flavor and Fragrance
Journal, 1992, 227-230
Reverchon E., Donsi G., Salicylic Acid Solubilization in Supercritical CO2 and Its
Micronization by RESS, Journal of Supercritical Fluids, 1993, 241-248
Reverchon E., Della Porta G., Supercritical CO2 Extraction and Fractionation of
Lavender Essential Oil and Waxes, Journal of Agricultural and Food
Chemistry, 1995, 1654-1658
Reverchon E., Supercritical-assisted atomization to produce micro- and/or
nanoparticles of controlled size and distribution, Industrial & Engineering
Chemistry Research, 2002, 2405-2411
Reverchon E., Della Porta G., Micronization of antibiotics by Supercritical Assisted
Atomiztion, Journal of Supercritical Fluids, 2003, 243–252
Roy C., Vrel D., Vega-Gonzalez A., Jestin P., Laugier S., Subra-Paternault P., Effect of
CO2-antisolvent techniques on size distribution and crystal lattice of
theophylline, Journal of Supercritical Fluids, 2011, 267-277
Sameia M., Vatanarab A., Fatemia S., Najafabadib A. R., Process variables in the
formation of nanoparticles of megestrol acetate through rapid expansion of
supercritical CO2, Journal of Supercritical Fluids, 2012, 1–7
Sane A., Limtrakul J., Co-precipitation of asiatic acid and poly(l-lactide) using
rapidexpansion of subcritical solutions into liquid solvents, Journal of
100
Nanoparticle Research, 2011, 4001–4013
Santos D. T., Albarelli J. Q., Beppu M. M., Meireles M. A. A., Stabilization of
anthocyanin extract from jabuticaba skins by encapsulation using supercritical
CO2 as solvent, Food Research International, 2013, 617–624
Satvati H. R., Lotfollahi M. N., Effects of extraction temperature, extraction pressure
and nozzle diameter onmicronization of cholesterol by RESS process, Powder
Technology, 2011, 109–114
Sencar-Bozic P., Srcic S., Knez Z., Kerc J., Improvement of nifedipine dissolution
characteristics using supercritical CO2, International Journal of Pharmaceutics,
1997, 123–130
Stippler E., Kopp S., B.Dressman J., Comparison of US pharmacopeia simulated
intestinal fluid TS (without pancreatin) and phosphate standard buffer ph 6.8,
TS of the international pharmacopoeia with respect to their use in in vitro
dissolution testing, Dissolution Technologies, 2004, 6-10
Subra P., Jestin P., Powders elaboration in supercritical media: comparison with
conventional routes, Powder Technology, 1999, 2-9
Tsai C-C., Lee M-J., Lin H-M., Micronization of Flufenamic Acid with Rapid
Expansion of Supercritical Solution (RESS) Method, NTUST Master''s Thesis,
2011
Turk M., Hils P., Helfgen B., Schaber K., Martin H.-J., Wahl M.A., Micronization of
pharmaceutical substances by the RapidExpansion of Supercritical Solutions
(RESS): a promising method to improve bioavailability of poorly soluble
pharmaceutical agents, Journal of Supercritical Fluids, 2002, 75–84
Turk M., Bolten D., Formation of submicron poorly water-soluble drugs by rapid
expansion ofsupercritical solution (RESS): Results for Naproxen, Journal of
Supercritical Fluids, 2010, 778–785
101
USP, The United States Pharmacopedia, 36th Edition (2013) Wasjingtone, D.C.
Wang J-D., Chen J-H., Yang Y-R., Micronization of titanocene dichloride by rapid
expansion of supercritical solution and its ethylene polymerization, Journal of
Supercritical Fluids, 2005, 159–172
Wen Z.,You X., Liu B., Zheng Z., Pu Y., Jiang L., Li Q., Formation of atractylone
liposomes by rapid expansionfrom supercritical to surfactant solution,
Asia-Pacific Journal of Chemical Engineering, 2011, 624–630
Wu X., Yi J-M., Liu Y-J., Liu Y-B., Zhang P-L., Solubility and micronisation of
phenacetin in supercritical carbon dioxide, Chemical Papers, 2013, 517-525
Yanez F., Martikainen L., Braga M.E.M., Alvarez-Lorenzo C., Concheiro A., Duarte
C.M.M., Gil M.H., de Sousa H.C., Supercritical fluid-assisted preparation of
imprinted contact lenses for drug delivery, Acta Biomaterialia, 2011,
1019-1030
Yasuji T., Takeuchi H., Kawashima Y., Particle design of poorly water-soluble drug
substances using supercritical fluid technologies, Advanced Drug Delivery
Reviews, 2008, 388-398
Zabihi F., Akbarnejad M. M., Vaziri Yazdi A., Arjomand M., Safekordi A. A., Drug
Nano-Particles Formation by Supercritical Rapid Expansion Method;
Operational Condition Effects Investigation, Iranian Journal of Chemistry &
Chemical Engineering, 2011, 7-15
陳淑鈺,利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究,國立台灣大學
化學工程學研究所碩士論文 (2008)
張瓊云,利用超臨界反溶劑法進行異抗壞血酸、沒食子酸丙酯及薑黃素微粒化,
國立台灣大學化學工程學研究所碩士論文 (2010)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top