(3.236.118.225) 您好!臺灣時間:2021/05/14 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱政緯
研究生(外文):Cheng-Wei Chiu
論文名稱:雙反應器藉由I-/IO3-電子媒介進行光催化水分解
論文名稱(外文):Photocatalytic water splitting in the presence of I-/IO3- shuttle redox mediator using twin reactor
指導教授:吳紀聖
指導教授(外文):Jeffrey Chi-Sheng Wu
口試委員:萬本儒林欣瑜
口試委員(外文):Ben-Zu WanHsin-yu Lin
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:水分解溫室效應離子傳輸
外文關鍵詞:Water splittingGreenhouse effectIon transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類在工業和石化燃料業的發展,人們逐漸體認到地球的石油儲量有限,以及在近期才被科學界廣泛認可的溫室效應情形,主要就是由石化燃料發電後的排放物二氧化碳所造成。Z-scheme系統應用於水分解擁有利用太陽能製造永續能源的潛力,其係放置產氫及產氧觸媒,透過兩種觸媒的交互合作,以及其中溶液電子媒介輔助傳遞電子電洞,達到利用可見光觸媒催化水分解的效果。本研究則利用陰離子I-/IO3-來擔任電子媒介的交換電子電洞工作。首先,使用溶凝膠法製備SrTiO3:Rh產氫觸媒搭配初濕含浸法附載白金金屬其表面,之後以氫氣混合氣煅燒。而產氧觸媒利用商用的WO3並同樣以含浸法附載白金並以空氣進行煅燒。雙反應器由陰離子交換膜Neosepta進行隔離以讓I-/IO3-離子可以順利作傳遞。以可見光為光源(300W 氙燈)進行水分解反應。由於IO3-相較於I-在NaI兩端初始濃度達到15mM時能夠產生最多產量的氫氣,產生10μmol/gcat.的氫氣在第6小時,且其O2/H2的比例為0.49,也就是接近水分解的化學當量比。在實驗第8小時有13μmol的氫氣產生,而O2/H2的比例則為0.63。本實驗結合了雙胞反應器和Z-scheme系統水分解兩者,以Neosepta陰離子交換膜作為結合此兩系統的關鍵。在Z-scheme系統下,透過電子媒介I-/IO3-的有效傳遞電子電洞能夠讓觸媒吸收可見光進行水分解並促進水分解反應的效能。而透過雙胞反應器進行水分解反應,除了能夠將產生的氧氣和氫氣分離以克服產物氫氧混合可能造成的危險,此外也減少了氫氧逆反應的可能性,在光源競爭方面,產氫和產氧端的分離也可有效增進個別產氫產氧端的反應效率。

Global warming becomes a serious problem due to the industrial revolution and the progress of the human civilization. The petroleum is also limited source on earth. The reason that the temperature increases on the earth is because of the greenhouse gases. One of the main greenhouse gases is CO2 from the combustion of fossil fuel. One of the best routes to solve the problem is the photo process that utilizes solar energy to drive the water splitting reaction. A Z-scheme of water splitting has the potential to use solar energy to split water into hydrogen and oxygen. The Z-scheme system contains two types of photocatalysts, one is H2-photocatalyst, and the other is O2-photocatalyst. By irradiation of the visible light, electrons and holes are generated on both photocatalyst. With the help of redox mediator, we could utilize visible light to split water into hydrogen and oxygen.
In this research, we developed the visible-light driven photocatalysts. SrTiO3:Rh was prepared by sol-gel method. This H2-photocatalyst was to produce H2 in the overall water splitting. The O2-photocatalyst, WO3, was received from a commercial manufacturer for the oxidation of water to form O2. The H2-photocatalyst and the O2-photocatalyst were loaded with Pt by incipient wetness method. The former is reduced under H2 and the later is calcined in air, respectively. The twin reactor is divided by Neosepta anion exchange membrane. We applied the H2-photocatalyst and O2-photocatalyst to run the overall water splitting in the presence of I-/IO3- redox mediators. The light source was 300W Xenon lamp. The optimized concentration of the redox mediator I-/IO3- was under 15 mM NaI solution initially for both side of the twin reactor, which was found to give the highest amount of hydrogen evolved. The results showed that 10 μmol/g‧cat H2 was evolved under the ratio of O2/H2 equal to 0.49 at the end of 6 hours. The amount of 13 μmol/g‧cat H2 was evolved under the ratio of O2/H2 equal to 0.63 at the end of 8 hours. The backward reaction of water splitting can be avoided by using the twin reactor. In addition, the cost of H2/O2 separation can be saved, and also the potential explosion of H2/O2 mixture can be prevented. In the twin reactor, H2-photocatalyst and O2-photocatalyst were separated so that light energy can be fully utilized.


目錄
摘要 I
Abstract II
目錄 IV
表目錄 XII
第一章 緒論 1
第二章 文獻回顧 4
2.1 原理 4
2.1.1 光觸媒基本理論與水分解 4
2.1.2 光觸媒反應的基本原理 6
2.1.3 光反應器型式 7
2.2 影響水分解反應的因素 9
2.2.1 觸媒材料特性 9
2.2.2 共觸媒元素負載效應 10
2.2.3 離子吸附效應效應 13
2.3 製備觸媒方法 14
2.3.1 固態熔融法製備 14
2.3.2 溶凝膠法製備 14
2.4 光催化水分解系統 15
2.4.1 單一光觸媒反應系統 15
2.4.2 雙光觸媒反應系統 15
第三章 實驗方法 17
3.1 實驗藥品與儀器設備 17
3.1.1 藥品 17
3.1.2 器材 19
3.2 還原觸媒之製備 20
3.2.1 固態高溫熔融法( Solid-State Fusion Method ) 20
3.2.2 溶凝膠法( Sol-gel Method ) 21
3.2.3光催化沈積法( Photocatalytic Deposition Method ) 22
3.2.4 初濕含浸法( Incipient Wetness Impregnation Method ) 23
3.3 產氧觸媒製備 25
3.4 陰離子交換膜 25
3.5 碘離子及碘酸離子傳遞擴散反應裝置 25
3.6離子分析 26
3.6.1碘離子及碘酸離子擴散實驗裝置 26
3.6.2離子層析儀(Ion Chromatography) 28
3.5 觸媒特性分析原理 30
3.5.1 儀器型號與規格 30
3.5.2 X光繞射儀(X-Ray Diffractometer,XRD) 30
3.5.3紫外線-可見光光譜儀(UV-Visible Diffuse Reflectance Spectroscopy) 34
3.5.4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, SEM) 36
3.5.5 能量分散光譜儀( Energy Dispersive Spectrometer,EDS ) 37
3.5.6 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 38
3.5.7 比表面積分析儀( Specific Surface Area Analyzer,BET ) 39
3.5.8 X光光電子能譜儀( X-ray Photoelectron Spectroscopy,XPS ) 40
3.5.9 氣相管柱層析儀( GC ) 41
3.6 光反應活性檢測 43
3.6.1 氫氣檢量線製作 44
3.6.2 氧氣與氮氣檢量線製作 46
3.6.3 光催化-水分解反應-分離式雙胞膜反應器系統(Twin Membrane Reactor System ) 47
3.6.4光催化水分解反應實驗流程 53
第四章 觸媒特性分析與討論 54
4.1 UV-Vis吸收光譜 54
4.2 XRD晶格繞射分析 57
4.3 SEM掃描式電子顯微鏡 59
4.4 EDS能量分散光譜 62
4.5 TEM穿透式電子顯微鏡 64
4.6 XPS表面元素價態分析 67
4.7 BET比表面積測定 69
第五章 反應結果與討論 70
5.1 離子層析儀分析碘離子和碘酸離子之擴散行為 70
5.1.1 碘酸離子和水之擴散平衡實驗 70
5.1.2 碘離子和水之擴散平衡實驗 71
5.1.3 碘酸離子和碘離子之擴散平衡實驗 72
5.1.4 離子擴散機制 73
5.1.4 碘離子及碘酸離子外顯擴散係數量化 75
5.2 光催化反應實驗介紹 76
5.2.1 反應選定因素 76
5.2.3 產氧端觸媒 – Pt/WO3 77
5.2.4 產氫端觸媒 – 溶凝膠法製備Pt/SrTiO3:Rh 77
5.2.5 產氫端觸媒 – Pt/TaON 84
5.2.6 產氫端觸媒 – 固態熔融法製備Ru/SrTiO3:Rh 85
5.3 不同離子濃度對水分解反應的影響 86
5.4 水分解反應的化學式平衡 90
第六章 結論 92
第七章 參考資料 93
個人小傳 96


圖目錄
Fig. 1.1 The scheme of CO2 reduction using twin reactor mimicking chloroplast. 3
Fig. 2.1 The energy diagram of the water splitting and pollutants degradation.[9] 4
Fig. 2.2 The illustration of conduction band and valence band of photocatalytic water splitting.[11] 5
Fig. 2.3 Relationship between band structure of semiconductor and redox potentials of water splitting. [12, 13] 6
Fig. 2.4 One step water splitting. 7
Fig. 2.5 Light source from (a)inner reactor,(b)side reactor,(c)top reactor.[15] 8
Fig. 2.6 (a) Honda-Fujishima reactor[1](b)Matsumura reactor[16] (c)Anpo reactor.[7] 9
Fig. 2.7 The simultaneous water splitting using Pt/ATaO2N(A=Ca、Sr、Ba) and Pt/WO3 in the presence of I-/IO3- redox mediator 11
Fig. 2.8 reaction mechanism for water splitting over Pt–TaON and Pt–WO3 with an IO3-/I- shuttle redox mediator. [20] 12
Fig. 2.9 The result of water splitting using Ru/SrTiO3:Rh combined with BiVO4. 12
Fig. 2.10 Adsorption properties of iodate(IO3-) and iodide(I-) anions on various photocatalyst powders. 13
Fig. 2.11 The dependence of gas evolution over the photocatalyst on the concentration of NaI solution. 14
Fig. 2.12 Schematic diagram of water splitting by a Z-scheme system. 16
Fig. 3.1 Procedures for the synthesis of SrTiO3:Rh photocatalyst by solid-state method. 21
Fig. 3.2 Procedures for the synthesis of SrTiO3:Rh photocatalyst by Sol-Gel. 22
Fig. 3.3 Procedures for photo-deposition of Pt cocatalyst on SrTiO3:Rh powder. 23
Fig. 3.4 The apparatus for reduction and oxidation pretreatment of catalysts. 24
Fig. 3.5 The reactor for diffusion experiment. 26
Fig. 3.6 Calibration line for I- concentration. 27
Fig. 3.7 Calibration line for IO3- concentration. 28
Fig. 3.8 Ion chromatography. 29
Fig. 3.9 The signal of I- from ion chromatography. 29
Fig. 3.9 Schematic diagram of X-ray diffraction. 31
Fig. 3.10 JCPDS standard pattern of Ta2O5.[25] 33
Fig. 3.11 JCPDS standard pattern of WO3.[26] 33
Fig. 3.12 JCPDS standard of X-ray diffraction pattern for SrTiO3. 34
Fig. 3.13 Signals generated from sample in presence of incident electron beam. 37
Fig. 3.14 Principle of EDS in atomic orbital. 38
Fig. 3.15 Wheatstone bridge device in thermal conductivity detector. 43
Fig. 3.16 The signal of hydrogen, oxygen and nitrogen from TCD respectively. 44
Fig. 3.17 The calibration line of hydrogen. 45
Fig. 3.18 The calibration line of O2. 46
Fig. 3.19 The calibration line of N2. 47
Fig. 3.20 Competition of light source between Pt/WO3 and Pt/SrTiO3:Rh. 48
Fig. 3.21 Device of whole twin reactor. 49
Fig. 3.22 light spectrum for Xenon lamp. 50
Fig. 3.23 Schematic figure of photocatalytic reaction on-line system for twin reactor. 51
Fig. 3.24 Procedure of water splitting reaction use twin reactor. 52
Fig. 4.1 UV-Vis spectra for SrTiO3:Rh loaded with different metals. 55
Fig. 4.2 UV-Vis spectra for TaON and its precursor. 56
Fig. 4.3 UV-Vis spectra for WO3. 56
Fig. 4.4 X-ray diffraction pattern for SrTiO3:Rh prepared by sol-gel and solid-state method. 57
Fig. 4.5 X-Ray diffraction pattern for SrTiO3:Rh loaded with different metals. 58
Fig. 4.6 X-Ray diffraction pattern of TaON and TaON loaded with Pt. 58
Fig. 4.7 X-Ray diffraction pattern of WO3 and WO3 loaded with Pt. 59
Fig. 4.8 SEM image of (a) SrTiO3:Rh (b) 0.8wt%Pt/SrTiO3:Rh prepared by sol-gel method (c) SrTiO3:Rh (d) 1wt%Ru/SrTiO3:Rh prepared by solid-state method (e) TaON (f) 0.5wt%Pt/TaON. (Magnification: 100K) 61
Fig. 4.9 SEM image of (a) WO3 (b) 0.5wt% Pt/WO3. (magnification: 100K) 62
Fig. 4.10 EDS analysis for element composition of SrTiO3:Rh prepared by sol-gel method. 63
Fig. 4.11 EDS analysis for element of Ru/SrTiO3:Rh prepared by solid-state method. 63
Fig. 4.12 EDS analysis for element of Pt/WO3. 64
Fig. 4.13 TEM image of (a) SrTiO3:Rh (b) 0.8wt%Pt/SrTiO3:Rh prepared by sol-gel method (c) SrTiO3:Rh (d) 1wt%Ru/SrTiO3:Rh prepared by solid-state method (e) TaON (f) 0.3wt%Pt/TaON. 66
Fig. 4.14 TEM image of (a) WO3 (b) 0.5wt%Pt/WO3. 67
Fig. 4.15 XPS analysis of Pt element on Pt/SrTiO3:Rh photocatalyst prepared by sol-gel method. 68
Fig. 4.16 XPS analysis of Pt element on Pt/TaON photocatalyst. 68
Fig. 4.17 XPS analysis of Pt element on Pt/WO3 photocatalyst. 69
Fig. 5.1 Simulated and experimental results comparison of mass transfer profile in NaIO3 diffusion into H2O system. 71
Fig. 5.2 Simulated and experimental results comparison of mass transfer profile in NaI diffusion into H2O system. 72
Fig. 5.3 Simulated and experimental results comparison of mass transfer profile in (a) I- (b) IO3- diffusion system. 73
Fig. 5.4 Diffusion mechanism of IO3- and OH- ions in diffusional reactor. 74
Fig. 5.5 Diffusion mechanism of IO3- and I- ions in diffusional reactor. 74
Fig. 5.6 Neosepta membrane after water splitting reaction. 77
Fig. 5.7 The illustration of photocatalytic water splitting in the presence of 10mM I-/IO3- initially. 78
Fig. 5.8 Photocatalytic water splitting in the presence of 10mM I-/IO3- redox mediator using twin reactor. 79
Fig. 5.9 The illustration of photocatalytic water splitting in the presence of 5mM I- initially. 80
Fig. 5.10 Photocatalytic water splitting in the presence of 5mM NaI solution. 80
Fig. 5.11 Photocatalytic water splitting in the presence of 15mM NaI solution. 82
Fig. 5.12 Two step watersplitting using I-/IO3- as shuttle redox mediator. 83
Fig. 5.13 Photocatalytic water splitting in the presence of 20mM NaI solution. 83
Fig. 5.14 Photocatalytic water splitting in the presence of 25mM NaI solution. 84
Fig. 5.15 Photocatalytic water splitting in the presence of 10mM NaI solution. 85
Fig. 5.16 Photocatalytic water splitting in the presence of 15mM NaI solution. 86
Fig. 5.17 The illustration of backward reaction on the hydrogen side under 5mM NaI solution. 88
Fig. 5.18 The illustration of backward reaction on the oxygen side under 20mM and 25mM NaI solution. 89
Fig. 5.19 The Amount of gas evolved and ration of H2/O2 under different concentration of NaI. 90































表目錄
Table 2.1 Sb/M-doped TiO2 and Sb/Cr-doped SrTiO3 for photocatalytic water splitting.[17] 11
Table 5.1 Apparent diffusivity results of iodide and iodate ions 76
Table 5.2 The ratio of O2/H2 of the photocatalytic water splitting in the presence of 5mM NaI solution. 81
Table 5.3 The ratio of O2/H2 of the photocatalytic water splitting in the presence of 15mM NaI solution. 82
Table 5.4 The ratio of O2/H2 of the photocatalytic water splitting in the presence of 10mM NaI solution. 86
Table 5.5 The gas evolution and pH value with different concentration of NaI. 91



























第七章 參考資料
1.A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. nature, 238 (1972) 37-38.
2.R. Konta, T. Ishii, H. Kato and A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. The Journal of Physical Chemistry B, 108 (2004) 8992-8995.
3.Y. Tachibana and R. Abe, A two-step photoexcitation system for photocatalytic water splitting into hydrogen and oxygen under visible light irradiation. 8109 (2011) 81090B-81090B-13.
4.R. Abe, M. Higashi and K. Domen, Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator. ChemSusChem, 4 (2011) 228-37.
5.吳紀聖, 李韋萱, 雙胞反應器進行光催化水分解結合CO2還原. 國立台灣大學碩士論文, 98-120 (2012)
6.W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang and J. Wu, A Novel Twin Reactor for CO< sub> 2 Photoreduction to Mimic Artificial Photosynthesis. Applied Catalysis B: Environmental, (2012)
7.M. Kitano, K. Tsujimaru and M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: Effect of the work function of the substrates on the yield of the reaction. Applied Catalysis A: General, 314 (2006) 179-183.
8.吳紀聖, 張展瑋, 以溶凝膠製得Pt/SrTiO3:Rh在鈰離子傳遞媒介下雙胞膜反應器進行可見光水分解. 國立台灣大學碩士論文, 34-114 (2011)
9.A. Kudo, H. Kato and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 33 (2004) 1534-1539.
10.A. Kudo, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 7 (2003) 31-38.
11.K. Maeda and K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C, 111 (2007) 7851-7861.
12.N. Serpone and E. Pelizzetti, Photocatalysis: fundamentals and applications. Wiley New York, 1989, p.
13.M. Gratzel, Photoelectrochemical cells. Nature, 414 (2001) 338-344.
14.A. Mills, R. H. Davies and D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev., 22 (1993) 417-425.
15.H. Kato and A. Kudo, Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). The Journal of Physical Chemistry B, 105 (2001) 4285-4292.
16.K. Fujihara, T. Ohno and M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3705-3709.
17.R. Abe, K. Sayama and H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I. The Journal of Physical Chemistry B, 109 (2005) 16052-16061.
18.K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. The Journal of Physical Chemistry, 90 (1986) 292-295.
19.M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) and WO3 with shuttle redox mediator. Chemical Physics Letters, 452 (2008) 120-123.
20.R. Abe, T. Takata, H. Sugihara and K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chem Commun (Camb), (2005) 3829-31.
21.Y. Sasaki, H. Nemoto, K. Saito and A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. The Journal of Physical Chemistry C, 113 (2009) 17536-17542.
22.S. S. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo and K. Domen, A redox-mediator-free solar-driven z-scheme water-splitting system consisting of modified ta3 n5 as an oxygen-evolution photocatalyst. Chemistry, 19 (2013) 7480-6.
23.Y. Sasaki, H. Kato and A. Kudo, [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc, 135 (2013) 5441-9.
24.W. Xuewen, Z. Zhiyong and Z. Shuixian, Preparation of nano-crystalline SrTiO< sub> 3 powder in sol-gel process. Materials Science and Engineering: B, 86 (2001) 29-33.
25.P. D. File, JCPDS International Center for Powder Diffraction Data. Swarthmore, PA, (1997) 25-0922.
26.P. D. File, JCPDS International Center for Powder Diffraction Data. Swarthmore, PA, (1997) 89-4479.
27.D. Bao, X. Yao, N. Wakiya, K. Shinozaki and N. Mizutani, Band-gap energies of sol-gel-derived< equation>< font face=''verdana''> SrTiO< sub> 3 thin films. Applied Physics Letters, 79 (2001) 3767-3769.
28.M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chemical reviews, 95 (1995) 69-96.
29.D. Lu, G. Hitoki, E. Katou, J. N. Kondo, M. Hara and K. Domen, Porous single-crystalline TaON and Ta3N5 particles. Chemistry of materials, 16 (2004) 1603-1605.
































QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔