(3.235.236.13) 您好!臺灣時間:2021/05/15 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭天倫
研究生(外文):Tien-Lun Cheng
論文名稱:以內照式蜂巢式反應器光降解苯酚廢水
論文名稱(外文):Remediation of phenol in wastewater by internally illuminated monolith reactor
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
口試委員:徐振哲張淑閔
口試委員(外文):Cheng-Che HsuSue-min Chang
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:蜂巢式反應器苯酚二氧化鈦觸媒
外文關鍵詞:Monolith reactorTiO2 photocatalystPhenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苯酚是世界主要水汙染物之一,常用於染色、樹脂合成上的工業用途,存在於工業廢水中,對於環境造成嚴重的危害。本研究以溶凝膠法製備TiO2,將TiO2覆膜在蜂巢狀陶瓷載體上,為了避免觸媒掉進載體孔洞中造成觸媒浪費,TiO2覆膜多層在蜂巢狀陶瓷載體上,並鍛燒於500 oC至形成銳鈦晶相,由SEM圖可以得知,覆膜三次後,觸媒均勻附著於載體表面。蜂巢式反應器中,於載體的每一個通道內置入PMMA(Poly(methyl methacrylate))側面發光光纖,光可經由光線傳送並照射到觸媒表面,在光纖的側面鑿洞以增加側面發光強度,以可固定深度的切割器固定切割深度,並於將光纖尾端接觸反應器內不鏽鋼面,增加光反射,經過光纖照明實驗,對於經過表面處理的光纖,可以增加30.7%的光強度。以此實驗裝置進行苯酚水溶液降解反應,以4-氨基安替比林直接光度法將溶液變色,並利用UV-Vis分光光度計進行苯酚濃度的測量,進而得到轉化率。光源為200W汞燈,光強度為2 W/cm2。由液相批次反應器可以內照明蜂巢式反應器的理想滯留時間為180分鐘,且TiO2觸媒優於含金屬Mn的TiO2觸媒,可以得到最大轉化率0.259。

Phenol is one of the major waster water pollutants in the world and wildly used in dye, resin synethsis industry. In the research, sol-gel prepared TiO2 was coated on the monolith multiple times to form multilayer structure. The catalyst was calcined to transform into anatase state at 500 °C. From SEM images, uniform catalyst layer can be achieved by multiple times of coating. PMMA(Poly(methyl methacrylate)) with caves which can increase the side emission of light were put inside each channel of monolith. The depth of each cave was kept constant by a modified cutter. The end of each fiber contacted with the inner side of the reactor’s stainless steel wall, which was provided as a reflective plane to enhance the light irradiation. From the results of optical fiber illumination experiment, the light intensity can be enhaced for 30.7% for cutted optical fibers. The light source was a 200 W mecury lamp to provide 2 W/cm2 light intensity. The batch reactor’s experimental results showd the best residence time for the internally illuminated monolith reactor system is 180 minutes. TiO2 catalyst shows better performance that Mn loaded TiO2 catalyst. The conversion achieved 0.259 with UVA light intensity of 2 W/cm2 at 25°C.

摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2-1 光觸媒反應原理 2
2-2 光觸媒降解之原理 3
2-3 光催化降解反應器簡介 5
2-4 熱水解法製備二氧化鈦 8
2-5 苯酚的簡介 9
2-5-1苯酚降解程序簡介 10
2-6 4-氨基安替比林直接光度法 13
2-7 苯酚光催化降解反應的中間產物 15
2-8 金屬負載對光催化降解反應的影響 16
2-9 光纖簡介 20
2-9-1 PMMA材料的UV吸收光譜 20
2-7 蜂巢狀反應器 21
2-7-1蜂巢狀載體(Monolithic support)簡介 21
2-7-2蜂巢狀陶瓷反應器(Honeycomb monolith reactor) 22
第三章 實驗方法 31
3-1 實驗藥品與器材 31
3-1-1 藥品 31
3-1-2 器材 31
3-2 實驗步驟 33
3-2-1負載不同金屬TiO2觸媒粉體製備 33
3-2-2苯酚水溶液濃度測量 33
3-2-3浸漬覆膜法(Dip-coating method) 35
3-2-4光纖照明實驗 37
3-3 觸媒特性分析原理與方法 38
3-3-1儀器型號與規格 38
3-3-2紫外光-可見光光譜儀(UV-VIS) 38
3-3-3掃描式電子顯微鏡(SEM) 40
3-3-4 X光繞射儀(XRD) 41
3-4 光催化活性檢測 45
3-4-1液相批次反應器 45
3-4-2內照明蜂巢式反應器 45
3-4-3光源光譜介紹 48
3-4-4苯酚水溶液降解 49
第四章 觸媒特性分析結果與討論 53
4-1 觸媒製備 53
4-1-1 TiO2覆膜液 53
4-2 觸媒檢測與特性分析 53
4-2-1 UV-VIS 53
4-2-2 XRD 54
4-2-3 SEM 55
第五章 光催化降解結果與討論 57
5-1 液相批次反應器 57
5-2 內照明蜂巢式反應器 58
5-2-1 空白實驗 58
5-2-2內照明蜂巢式反應器系統轉化率 59
5-2-3 苯酚光催化降解反應中間產物對於4-氨基安替比林直接光度法的影響 61
第六章 光纖照明實驗結果與討論 63
第七章 結論 64
參考文獻 65
個人小傳 69
附錄 70
A. 液相批次反應器加入雙氧水 70
B. 內照明蜂巢式反應器系統轉化率 70
C. 內照明蜂巢式反應器系統轉化率 71


1.D. M. Phairat Usubharatana, Amornvadee Veawab, and Paitoon Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial and Engineering Chemistry Research, 45 (2006) 2558-2568.
2.A. Kudo, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 7 (2003) 31-38.
3.M. N. Chong, B. Jin, C. W. Chow and C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res, 44 (2010) 2997-3027.
4.A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chemical Physics Letters, 336 (2001) 424-430.
5.J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney and M. Rouse, Immobilisation of TiO2 powder for the treatment of polluted water. Applied Catalysis B-Environmental, 17 (1998) 25-36.
6.A. K. Ray, Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chemical Engineering Science, 54 (1999) 3113-3125.
7.M. Subramanian and A. Kannan, Photocatalytic degradation of phenol in a rotating annular reactor. Chemical Engineering Science, 65 (2010) 2727-2740.
8.A. K. Ray and A. A. C. M. Beenackers, Development of a new photocatalytic reactor for water purification. 40 (1998) 73-83.
9.J. C. Lee, M. S. Kim, C. K. Kim, C. H. Chung, S. M. Cho, G. Y. Han, K. J. Yoon and B. W. Kim, Removal of paraquat in aqueous suspension of TiO2 in an immersed UV photoreactor. Korean Journal of Chemical Engineering, 20 (2003) 862-868.
10.O. Harizanov and A. Harizanova, Development and investigation of sol-gel solutions for the formation of TiO2 coatings. Solar Energy Materials and Solar Cells, 63 (2000) 185-195.
11.S. J. Bu, Z. G. Jin, X. X. Liu, L. R. Yang and Z. J. Cheng, Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Materials Chemistry and Physics, 88 (2004) 273-279.
12.C. Legrand-Buscema, C. Malibert and S. Bach, Elaboration and characterization of thin films of TiO2 prepared by sol-gel process. Thin Solid Films, 418 (2002) 79-84.
13.G. Busca, S. Berardinelli, C. Resini and L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials, 160 (2008) 265-288.
14.D. P. Das, K. Parida and B. R. De, Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphate. Journal of Molecular Catalysis a-Chemical, 240 (2005) 1-6.
15.V. Nguyen and T. Nguyen, Photocatalytic removal of phenol under natural sunlight over N-TiO2-SiO2 catalyst: The effect of nitrogen composition in TiO2-SiO2. 1 (2009) 23-29.
16.M. J. Dietrich, T. L. Randall and P. J. Canney, Wet air oxidation of hazardous organics in wastewater. Environmental Progress, 4 (1985) 171-177.
17.S. T. Kolaczkowski, P. Plucinski, F. J. Beltran, F. J. Rivas and D. B. McLurgh, Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 73 (1999) 143-160.
18.F. Luck, Wet air oxidation: past, present and future. Catalysis Today, 53 (1999) 81-91.
19.S. Hamoudi, A. Sayari, K. Belkacemi, L. Bonneviot and F. Larachi, Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2 catalysts. Catalysis Today, 62 (2000) 379-388.
20.H. Chen, A. Sayari, A. Adnot and F. Larachi, Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B-Environmental, 32 (2001) 195-204.
21.M. Saquib, M. Abu Tariq, M. M. Haque and M. Muneer, Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manage, 88 (2008) 300-6.
22.E. Neyens and J. Baeyens, A review of classic Fenton''s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98 (2003) 33-50.
23.G. Calleja, J. A. Melero, F. Martinez and R. Molina, Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Research, 39 (2005) 1741-1750.
24.Y. Zhang, L. Wang and B. E. Rittmann, Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Appl Microbiol Biotechnol, 86 (2010) 1977-85.
25.America Public Health Association, American Water Works Association, Water Environment Federal, Standard Methods for Examination of Water and Wastewater 5530 PHENOLS#1, America Public Health Association, American Water Works Association, Water Environment Federal, Standard Methods for Examination of Water and Wastewater (1999) 1-9.
26.E. Emerson, The condensation of aminoantipyrine. II. A new color test for phenolic compounds. Journal of Organic Chemistry, 8 (1943) 417-428.
27.Y. C. Fiamegos and C. D. Stalikas, Synthesis and analytical applications of 4-aminopyrazolone derivatives as chromogenic agents for the spectrophotometric determination of phenols. Analytica chimica …, 403 (2000) 315-323.
28.R. Neufeld and S. Paladino, Comparison of 4-Aminoantipyrine and Gas-Liquid Chromatography Techniques for Analysis of Phenolic Compounds. Journal (Water Pollution Control Federation), 57 (1985)
29.A. Sobczynski, L. Duczmal and W. Zmudzinski, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis a-Chemical, 213 (2004) 225-230.
30.A. Di Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO(2). Catalysis Today, 75 (2002) 87-93.
31.M. Khraisheh and L. Wu, Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts. Chemical Engineering …, (2012)
32.E. P. Reddy, B. Sun and P. G. Smirniotis, Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants. Journal of Physical Chemistry B, 108 (2004) 17198-17205.
33.G. Marci, L. Palmisano, A. Sclafani, A. M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives and G. Solana, Influence of tungsten oxide on structural and surface properties of sol-gel prepared TiO2 employed for 4-nitrophenol photodegradation. Journal of the Chemical Society-Faraday Transactions, 92 (1996) 819-829.
34.Z. B. Zhang, C. C. Wang, R. Zakaria and J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B, 102 (1998) 10871-10878.
35.R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings and F. Besenbacher, Promotion of Phenol Photodecomposition over TiO(2) Using Au, Pd, and Au-Pd Nanoparticles. ACS nano, 6 (2012) 6284-92.
36.K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, Heterogeneous Photocatalytic Decomposition of Phenol over Tio2 Powder. Bulletin of the Chemical Society of Japan, 58 (1985) 2015-2022.
37.V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero and E. Pelizzetti, Photocatalytic Degradation of Phenol in Aqueous Titanium-Dioxide Dispersions. Toxicological and Environmental Chemistry, 16 (1988) 89-109.
38.M. Primet, P. Pichat and M. V. Mathieu, Infrared Study of Surface of Titanium Dioxides .2. Acidic and Basic Properties. Journal of Physical Chemistry, 75 (1971) 1221-&.
39.J. H. Nahida, Spectrophotometric Analysis for the UV-Irradiated (PMMA). International Journal of Basic & Applied Sciences, 12 (2012) 58.
40.J. A. Moulijn, M. T. Kreutzer and T. Alexander, Monolithic Catalysts and Reactors: High Precision with Low Energy Consumption. 54 (2011)
41.S. G. Ronald M. Heck, Robert J. Farrauto, The application of monoliths for gas phase catalytic reactions. Chemical Engineering Journal, 82 (2001) 149-156.
42.A. Beers, T. Nijhuis and N. Aalders, BEA coating of structured supports—performance in acylation. Applied Catalysis A: …, 243 (2003) 237-250.
43.H. Lin and K. T. Valsaraj, Development of an optical fiber monolith reactor for photocatalytic wastewaterTreatment. Journal of Applied Electrochemistry, 35 (2005) 699–708.
44.S. a. D. F. O. Michael L, Acetone oxidation in a photocatalytic monolith reactor. Journal of Catalysis, 149 (1994) 81-91.
45.M. M. Hossain, G. B. Raupp, S. O. Hay and T. N. Obee, Three-dimensional developing flow model for photocatalytic monolith reactors. AIChE Journal, 45 (1999) 1309-1321.
46.G. B. Raupp, A. Alexiadis, M. M. Hossain and R. Changrani, First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air. Catalysis Today, 69 (2001) 41-49.
47.W. Choi, J. Y. Ko, H. Park and Jong Shik Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental, 31 (2001) 209-220.
48.F. L. Dingwang Chen, Ajay K. Ray, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction. AIChE Journal, 46 (2000) 1034-1045.
49.P. Du, J. T. Carneiro, J. A. Moulijn and G. Mul, A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Applied Catalysis A: General, 334 (2008) 119-128.
50.M. A. Aguado, M. A. Anderson and C. G. Hill Jr, Influence of light intensity and membrane properties on the photocatalytic degradation of formic acid over TiO2 ceramic membranes. Journal of Molecular Catalysis, 89 (1994) 165-178.
51.J. Chen, H. Yang, N. Wanga, Z. Ring and T. Dabros, Mathematical modeling of monolith catalysts and reactors for gas phase reactions. Applied Catalysis A: General, 345 (2008) 1-11.
52.H. F. Lin and K. T. Valsaraj, An optical fiber monolith reactor for photocatalytic wastewater treatment. Aiche Journal, 52 (2006) 2271-2280.
53.R. M. Machado, R. R. Broekhuis, Andrew F. Nordquist, B. P. Roy and S. R. Carney, Applying monolith reactors for hydrogenations in the production of specialty chemicals—process and economic considerations. Catalysis Today, 105 (2005) 305–317.
54.J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53 (1999) 115-129.
55.Author, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source of Article, in H. Haapala(H. Haapala), The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source of Book, Environmental Pollution. Yea, Number of Chapter, Pages.
56.Author, Materials science and engineering : an introduction of Article, in W. D. C. Jr.(W. D. C. Jr.), Materials science and engineering : an introduction of Book, Wiley, New York. Yea, Number of Chapter, Pages.
57.X. X. Xue, W. Ji, Z. Mao, Z. S. Li, W. D. Ruan, B. Zhao and J. R. Lombardi, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 95 (2012) 213-217.
58.Q. Xiao and L. L. Ouyang, Photocatalytic photodegradation of xanthate over Zn1-xMnxO under visible light irradiation. Journal of Alloys and Compounds, 479 (2009) L4-L7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top