(3.236.122.9) 您好!臺灣時間:2021/05/09 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁煜庭
研究生(外文):Yu-Ting Weng
論文名稱:太陽能多晶矽晶體生長的晶粒控制及晶粒競爭之研究
論文名稱(外文):Grain Control and Grain Competition of Multicrytalline Silicon Crystal Growth for Photovoltaic Application
指導教授:藍崇文藍崇文引用關係
口試委員:高振宏洪儒生徐文慶
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:晶粒控制晶粒競爭多晶矽垂直固化
外文關鍵詞:grain controlgrain competitionmulticrystalline silicondirectional solidification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
太陽能多晶矽的品質決定在長晶時的成核與晶粒控制,研究發現從未完全熔化之碎矽料長出的晶碇,初始晶粒多且小,且此晶碇錯排的增長速率較慢,可使得整體晶碇品質較好且均勻,所以,了解這種生長模式是主要的目標。在本論文中利用球型子晶作為成核層並模擬類似的生長模式,球型子晶為一種隨機晶向晶種,可提供晶粒在生長初期為公平競爭,吾人可藉此了解晶粒生長時的競爭機制及其生長癖好。在這個實驗中共觀察到三種晶粒競爭的方式,且發現初始的non-Σ晶界比例高達70 %。此外,吾人設計了三個實驗嘗試以更簡易的方式來控制晶粒,使底部初始的晶粒較小且獨立生長。在矽粉石英粉塗佈實驗中,最高可誘導出30 % 左右的non-Σ晶界,並從晶粒上可看出有較小的晶粒,可惜的是,仍可看到在塗佈區域有幾個較大晶粒生長,原因可能來自於過冷度大,晶粒成核時將熱吸走,使得成核點變少導致。在凹槽軟床的實驗中,non-Σ晶界的比例非常低,多為Σ3孿生晶界,其生長較類似於dendrite 模式。而在底部置入石英管的實驗中,可以在底部誘導出20 % 左右的non-Σ晶界,從石英管區域長出的晶粒較小,且含有許多孿生晶粒,其原因來自於石英管內空間狹小,晶粒易於側壁成核,這種生長方式會伴隨著孿生晶界。從三個實驗的初步結果發現藉由塗佈層控制成核的方式可在底部誘導出較高比例的non-Σ晶界,但和球型子晶向比仍顯不足,塗佈層的均勻性是未來可以改善的方向。

Nucleation and grain control decide the performance of mutilcrystalline silicon for photovoltaic application. It was found that mc-Si which is grown from unmelt feedstock layer have smaller grain size, and the dislocation propagation rate is lower. The ingot have good and more uniform quality in this growth mode. So, understand this kind of growth is important. In this study, we use spherical seeds as nucleation layer to imitate the growth mode. Sperical seeds provide random orientation and fair opportunity for grain competition. We can learn the grain competition mechanism and growth habits from the experiment. Three kinds of grain competition mechanism were found and the initial non-Σ grain boundary is about 70 %. In this study, we proposed three methods to obtain the same growth behavior, high percentage of non-Σ grain boundary and small grain size. First, the Si/SiO2 mixed coating was proposed. In this control, it can be obtained non-Σ grain boundary up to 30 % and with small grains. Unfortunately, there were still some big grains remained in the controlled region. The undercooling may be reason. Second, multi-notch pattern was used , but the percentage of non-Σ grain boundary were very low. The grains were almost (110), which is the same as notch crucible[1]. Third, in the SiO2 tubes experiment, the grains were small, and the non-Σ grain boundary were 20 %. Nucleation on the tube wall may be the reason why the percentage of twin boundaries were 60 %[2]. In our proposed methods, mixed coating can introduce more non-Σ grain boundary than others. To improve the non-Σ grain boundary percentage, enhance the uniformity of coating may be the key.

致謝 i
中文摘要 1
Abstract 2
目錄 4
圖目錄 7
表目錄 11
第一章 緒論 12
1-1前言 12
1-2研究目的 13
第二章 文獻回顧 15
2-1缺陷在太陽能多晶矽的影響 15
2-1-1太陽能多晶矽中缺陷的種類 15
2-1-2 太陽能多晶矽中晶界的特性 18
2-2 晶粒生長及競爭的機制 21
2-2-1 太陽能多晶矽中孿生晶界的生成機制 21
2-2-2 太陽能多晶矽中的晶粒競爭機制 24
2-3 太陽能多晶矽晶癖控制方法 27
2-3-1太陽能多晶矽晶界控制 27
第三章 實驗方法及實驗器材 33
3-1實驗藥品 33
3-1-1 矽晶生長使用藥品 33
3-1-2 矽晶化學處理藥品 34
3-1-3 矽晶清洗處理藥品 35
3-2實驗設備與器材 36
3-2-1 多晶鑄造高溫爐(pilot scale) 36
3-2-2多晶鑄造高溫爐(G1 scale) 39
3-2-3 多晶生長前後處設備 41
3-2-4 量測設備 45
3-3實驗設計 51
3-3-1球型子晶實驗 51
3-3-2矽粉石英粉塗佈實驗 52
3-3-3凹槽軟床實驗 54
3-3-4石英管圖騰實驗 54
第四章 結果與討論 56
4-1球型子晶實驗 56
4-1-1 晶粒生長及晶向分析 56
4-1-2 晶界種類與分佈分析 61
4-1-3 晶粒競爭機制探討 63
4-2矽粉石英粉塗佈實驗 73
4-2-1 晶粒生長及晶向分析 73
4-2-2 晶界種類及分佈分析 76
4-2-3 塗佈層分析 79
4-2-4 少數載子壽命 79
4-3凹槽軟床實驗 80
4-3-1 晶粒生長及晶向分析 80
4-3-2 晶界種類及分佈分析 82
4-4石英管圖騰實驗 83
4-4-1 晶粒生長及晶向分析 83
4-4-2 晶界種類及分佈分析 85
第五章 結論 87
參考文獻 88


[1] T.F. Li, K.M. Yeh, W.C. Hsu, C.W. Lan, High-quality multi-crystalline silicon (mc-Si) grown by directional solidification using notched crucibles, Journal of Crystal Growth, 318 (2011) 219-223.
[2] T. Duffar, A. Nadri, On the twinning occurrence in bulk semiconductor crystal growth, Scripta Materialia, 62 (2010) 955-960.
[3] T. Taishi, T. Hoshikawa, M. Yamatani, K. Shirasawa, X. Huang, S. Uda, K. Hoshikawa, Influence of crystalline defects in Czochralski-grown Si multicrystal on minority carrier lifetime, Journal of Crystal Growth, 306 (2007) 452-457.
[4] C.W. Lan, W.C. Lan, T.F. Lee, A. Yu, Y.M. Yang, W.C. Hsu, B. Hsu, A. Yang, Grain control in directional solidification of photovoltaic silicon, Journal of Crystal Growth, 360 (2012) 68-75.
[5] K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting, Acta Materialia, 54 (2006) 3191-3197.
[6] T.Y. Wang, S.L. Hsu, C.C. Fei, K.M. Yei, W.C. Hsu, C.W. Lan, Grain control using spot cooling in multi-crystalline silicon crystal growth, Journal of Crystal Growth, 311 (2009) 263-267.
[7] K.M. Yeh, C.K. Hseih, W.C. Hsu, C.W. Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Progress in Photovoltaics: Research and Applications, 18 (2010) 265-271.
[8] T.F. Li, H.C. Huang, H.W. Tsai, A. Lan, C. Chuck, C.W. Lan, An enhanced cooling design in directional solidification for high quality multi-crystalline solar silicon, Journal of Crystal Growth, 340 (2012) 202-208.
[9] K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, N. Usami, Growth of multicrystalline Si ingots for solar cells using noncontact crucible method without touching the crucible wall, in: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012, pp. 001830-001832.
[10] N. Stoddard, W. Bei, I. Witting, M. Wagener, P. Yongkook, G. Rozgonyi, R. Clark, Casting single crystal silicon: novel defect profiles from BP solar''s mono2 ™ wafers, in, 2008, pp. 1-8.
[11] A. Muller, M. Ghosh, R. Sonnenschein, P. Woditsch, Silicon for photovoltaic applications, Materials Science and Engineering: B, 134 (2006) 257-262.
[12] B. Ryningen, G. Stokkan, M. Kivambe, T. Ervik, O. Lohne, Growth of dislocation clusters during directional solidification of multicrystalline silicon ingots, Acta Materialia, 59 (2011) 7703-7710.
[13] S. Joonwichien, S. Matsushima, N. Usami, Effects of crystal defects and their interactions with impurities on electrical properties of multicrystalline Si, Journal of Applied Physics, 113 (2013) 133503-133506.
[14] N. Usami, R. Yokoyama, I. Takahashi, K. Kutsukake, K. Fujiwara, K. Nakajima, Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth, Journal of Applied Physics, 107 (2010) 013511-013515.
[15] M.M. Kivambe, T. Ervik, B. Ryningen, G. Stokkan, On the role of stacking faults on dislocation generation and dislocation cluster formation in multicrystalline silicon, Journal of Applied Physics, 112 (2012) 103528-103528-103526.
[16] K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing, Applied Physics Letters, 93 (2008) 122108-122108-122103.
[17] A. Cuevas, M. Stocks, S. Armand, M. Stuckings, A. Blakers, F. Ferrazza, High minority carrier lifetime in phosphorus-gettered multicrystalline silicon, Applied Physics Letters, 70 (1997) 1017-1019.
[18] S.M. Myers, M. Seibt, W. Schroter, Mechanisms of transition-metal gettering in silicon, Journal of Applied Physics, 88 (2000) 3795-3819.
[19] A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J.S. Christensen, B.G. Svensson, Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing, Journal of Applied Physics, 99 (2006) 093509-093506.
[20] A. Bentzen, A. Holt, Overview of phosphorus diffusion and gettering in multicrystalline silicon, Materials Science and Engineering: B, 159–160 (2009) 228-234.
[21] E. Schmid, S. Wurzner, C. Funke, T. Behm, R. Helbig, O. Patzold, H. Berek, M. Stelter, The correlation between spatial alignment of dislocations, grain orientation, and grain boundaries in multicrystalline silicon, Crystal Research and Technology, 47 (2012) 229-236.
[22] M.L. Kronberg, F.H. Wilson, Secondary Recrystallization in Copper, T Am I Min Met Eng, 185 (1949) 501-514.
[23] A.L. Endros, Mono- and tri-crystalline Si for PV application, Solar Energy Materials and Solar Cells, 72 (2002) 109-124.
[24] A. Bary, G. Nouet, Electrical activity of the first‐ and second‐order twins and grain boundaries in silicon, Journal of Applied Physics, 63 (1988) 435-438.
[25] H.Y. Wang, N. Usami, K. Fujiwara, K. Kutsukake, K. Nakajima, Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Materialia, 57 (2009) 3268-3276.
[26] J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon, Journal of Applied Physics, 96 (2004) 5490-5495.
[27] K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, K. Nakajima, Influence of structural imperfection of Sigma 5 grain boundaries in bulk multicrystalline Si on their electrical activities, Journal of Applied Physics, 101 (2007) 063509-063505.
[28] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, M. Yamada, Correlation between residual strain and electrically active grain boundaries in multicrystalline silicon, Applied Physics Letters, 93 (2008) 112105-112103.
[29] G. Stokkan, Relationship between dislocation density and nucleation of multicrystalline silicon, Acta Materialia, 58 (2010) 3223-3229.
[30] K.K. Leung, H.W. Kui, Microstructures of undercooled Si, Journal of Applied Physics, 75 (1994) 1216-1218.
[31] K. Nagashio, K. Kuribayashi, Growth mechanism of twin-related and twin-free facet Si dendrites, Acta Materialia, 53 (2005) 3021-3029.
[32] F. Wilhelm, The orientation of high-order growth twins in diamond-type crystals, Journal of Applied Crystallography, 4 (1971) 521-523.
[33] M. Trempa, C. Reimann, J. Friedrich, G. Muller, D. Oriwol, Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals, Journal of Crystal Growth, 351 (2012) 131-140.
[34] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, K. Nakajima, Grain growth behaviors of polycrystalline silicon during melt growth processes, Journal of Crystal Growth, 266 (2004) 441-448.
[35] P.J. Hesketh, C. Ju, S. Gowda, E. Zanoria, S. Danyluk, Surface Free-Energy Model of Silicon Anisotropic Etching, J Electrochem Soc, 140 (1993) 1080-1085.
[36] T. Duffar, A. Nadri, The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon, Comptes Rendus Physique, 14 (2013) 185-191.
[37] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, K. Nakajima, In-situ observations of melt growth behavior of polycrystalline silicon, Journal of Crystal Growth, 262 (2004) 124-129.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔