(3.236.231.61) 您好!臺灣時間:2021/05/15 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周奕辰
研究生(外文):I-Chen Chou
論文名稱:新型無乳化劑乳化聚合技術開發:製備活性共聚乳膠及均一粒徑有機/無機混成乳膠
論文名稱(外文):Development of Novel Surfactant-Free Emulsion Polymerization Techniques: Preparation of Living Block Copolymer and Monodisperse Organic/Inorganic Hybrid Latexes
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試委員:戴子安謝國煌李佳芬陳崇賢黃延吉許克瀛
口試委員(外文):Chi-An DaiKuo-Huang HsiehChia-Fen LeeChorng-shyan ChernYan-Jyi HuangKeh-Ying Hsu
口試日期:2013-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:239
中文關鍵詞:Pickering 乳化聚合11-對二苯乙烯控制活性自由基聚合有機/無機複合乳膠顆粒均一粒徑分散聚合無乳化劑乳化聚合核/殼結構
外文關鍵詞:Pickering emulsion polymerization11-diphenylethenecontrolled radical polymerizationorganic/inorganic composite latexmonodispersedispersion polymerizationsurfactant-free emulsion polymerizationcore/shell structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,吾人以各種無乳化劑之乳化聚合配合各種新型無乳化聚合技術之開發,製備活性共聚乳膠及均一粒徑有機/無機混成乳膠,並探討其反應機制。本論文共分為三大部分。第一部份使用1,1-對二苯乙烯 (1,1-diphenylethylene,DPE) 控制活性自由基聚合以及製備其團聯共聚物,並使用Pickering 乳化進行油相內之活性自由基聚合研究。第二部分為研究不穩定狀態下Pickering乳化聚合時所生成的均一粒徑乳膠顆粒之研究。此外並使用無乳化劑固體粒子穩定聚合法一步驟製備均一粒徑之高分子/二氧化矽之 (核/殼)奈米複合乳膠。第三部份為使用分散聚合(dispersion polymerization),在無乳化劑的狀態下開發新型製備均一微米級乳膠顆粒之技術及分析,並使用無乳化劑分散聚合包覆碳黑奈米粒子。
第一部份包含第二、三章。在第二章中利用1,1-對二苯乙烯 (1,1-diphenylethylene,DPE) 控制活性自由基聚合。實驗發現在較低溫的聚合系統中,不論改變1,1-對二苯乙烯的量、起始劑的量,分子量皆不隨著單體轉化率升高而成長。藉由提高反應溫度且預熱起始劑的處理,在DPE控制活性自由基聚合的系統中也能得到傳統活性自由基聚合的特徵。反應溫度、預熱步驟等變因對於分子量、分子量分佈的影響將在這個部分討論。最後利用DPE-capped PMMA當巨起始劑,成功的製備 聚(甲基丙烯酸甲酯)-聚(丙烯酸丁酯) 團聯共聚物,並探討引入溶劑的量及對反應速率、活性自由基聚合控制效果、分子量及其分佈之影響。
第三章將此DPE控制活性自由基聚合引入Pickering乳化系統中進行反應,在水熱法環境下利用親水性高分子電解質聚苯乙烯磺酸鈉鹽 (Poly(sodium 4-styrenesulfonate, PSS-NA) 協同合成具懸浮性的親水奈米氧化鋅粒子作為Pickering乳化之穩定粒子。藉由使用不同分子量的PSS-NA和改變其用量,研究對於Pickering乳化聚合時之型態、懸浮穩定性、油水介面性質、及DPE活性自由基聚合行為之影響。
第二部份包含第四章以及附錄。吾人發現在不穩定的Pickering乳化聚合中,特定條件下能得到部分穩定的次微米級均一粒徑乳膠顆粒。吾人對於此現象進行一系列研究並提出一個凝聚誘導(Coalescence induce)的聚合機制用於闡述此均一乳膠例子之合成路徑,並延伸此研究至沒有穩定粒子存在之無乳化劑系統,對於諸多變因進行探討。因生成的乳膠粒子其產率(yield)較低,故安排於附錄內。第四章中則是探討使用市售表面負電荷之二氧化矽奈米粒子,使用無乳化劑乳化聚合由帶正電起始劑AIBA起始一步驟合成均一粒徑之高分子乳膠/二氧化矽之核/殼奈米複合乳膠粒子,並探討二氧化矽粒子濃度、水相酸鹼度等對此核殼結構合成之影響。
第三部份包含第五、第六章。第五章中,吾人在醇相中進行無乳化劑之分散聚合,使用帶電之起始劑合成無乳化劑包覆之乳膠顆粒。然而,單獨使用帶電起始劑並無法獲得完全均一粒徑以及大於微米級之乳膠粒子。為了克服此問題,使用了帶電/不帶電的混合起始劑系統,發現藉由加入此不帶電的起始劑能得到數微米大小之均一粒徑乳膠顆粒。吾人對於此新型研究路徑之各種變因作一系列探討。 第六章中,使用無乳化劑醇/水相分散聚合,製備包覆奈米碳黑粒子之複合材料。首先使用溶膠凝膠法對市售碳黑表面做反應官能基之接枝反應同時並增加其長時間分散性使其均勻分散於溶劑中,隨後進行無乳化劑之分散聚合,成功製備高分子乳膠顆粒包覆之碳黑/高分子之核/殼奈米複合乳膠,並探討碳黑表面接枝量、使用起始劑種類、溶劑極性等因素對包覆之影響。


In this research, we developed several kinds of novel surfactant-free polymerization along with various known surfactant-free polymerization techniques for preparing living block copolymer organic/inorganic hybrid latexes as well as monodisperse latexes. This research was divided into three main parts. In the first part, 1,1-diphenylethene(DPE) controlled radical polymerization was performed and used to synthesize living block copolymer, further extended the system to Pickering emulsion polymerization. In the second part, we studied the formation of monodisperse latexes derived from unstable Pickering emulsion polymerization. Besides, monodisperse polymer/silica core/shell nanocomposites were prepared by emulsifier-free solid stabilized polymerization. In the third part, surfactant-free alcoholic dispersion polymerization was conducted for monodisperse latexes as well as nanoparticles encapsulation.
Chapter 2 and 3 were contained in the first part. In chapter 2, controlled free radical polymerizations by 1,1-diphenylethene(DPE) were demonstrated. In our previous study, the DPE controlled radical polymerization with constant molecular weight throughout the polymerization was caused by the intrinsically low reactivation rate constant (k2) of DPE-capped dormant chains at lower temperatures. By using a preheating treatment of initiators followed by a living polymerization of monomers at higher temperatures, a continuous growing of polymers with unimodal molecular weight distribution and a relatively small polydispersity index was observed. The reaction temperature, and preheating treatment to the molecular weight also molecular weight distribution were discussed. Moreover, we prepared poly(methyl methacrylate-block-n butyl acrylate) (PMMA-b-PBA) block copolymers using DPE-capped PMMA as a macroinitiator through bulk and solution polymerization. The influences of solvent and polymerization methods on the polymerization rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) throughout the polymerization were studied and discussed. In chapter 3, Pickering emulsion polymerization in the presence of a novel suspension of zinc oxide/ Poly(sodium 4-styrenesulfonate) (ZnO/PSS-) nanocomposite particles was applied to prepare ZnO/living block copolymer latexes. In the emulsion system, 1,1-diphenylethene(DPE) controlled radical polymerization of poly(methyl methacrylate)-b-poly(butyl acrylate) was proceeded in oil phase. The influences of hydrophilicity of the ZnO/PSS- nanocomposite as well as the ratio between ZnO/PSS- and oil phase on the polymerization, controlled living character, molecular weight (Mn), and molecular weight distribution (PDI) of living block copolymers throughout the Pickering emulsion polymerization has also been elaborated. To the best of our knowledge, this was the first solid stabilized emulsion with a controlled/living radical polymerization inside.
Chapter 4 and Appendix were contained in the second part. We discovered that monodisperse latexes (MLs) ranging from nanometers to micrometers with a clean surface and acceptable colloidal stability can be obtained under unstable Pickering emulsion polymerization conditions. A coalescence-induced Pickering emulsion polymerization route for the MLs was proposed. Furthermore, we extended this polymerization system to coalescence induced surfactant-free emulsion polymerization in the absence of any particulate stabilizers and studied various parameters thoroughly. Due to the relatively low latex production yields with respect to the monomer input from the coalescence follows creaming, we arranged this part into Appendix. In chapter 4, we conducted the emulsifier-free polymerization in the presence of commercial grade negatively charged colloidal silica. Well-defined vinyl polymer core/silica shell with near monodisperse distributions could be readily obtained in a single step using cationic AIBA as initiator. Various syntheses parameters such as the pH of the solution, the kind of initiator employed into the polymerization, the amount of silica, and the ratio between the monomer and the silica were studied.
Chapter 5 and 6 were contained in the third part. In chapter 5, we propose a new strategy for preparing high solid content, surfactant-free charge stabilized monodisperse latex particles via alcoholic dispersion polymerization by means of a mixed ionic/non-ionic initiator system, which produces hundreds of nanometer up to several micron sized latex particles with a clean surface in a single batch process. It was observed that no truly monodisperse latexes could be obtained using ionic initiators alone in alcoholic dispersion polymerization, therefore a mixed initiation approach was proposed. The effect of various factors on this new approach is investigated, and a specific mechanism is also presented. In chapter 6, we describe a new method based on surfactant-free aqueous/alcoholic dispersion polymerization, which enables the polymeric encapsulation of nanoparticles. Mechanism of this approach is investigated in the context of the preparation of polystyrene encapsulated carbon black (CB) nanocomposite latex particles. Commercial grade MOGUL® L CB is first grafted with reactive silane coupling agents through sol-gel reaction and is finely dispersed in the polar medium with dissolved monomer, then the ionic initiator is added to the system to start the polymerization. The reactive functional groups introduced onto the CB nanoparticles enable its participation into the nucleation also surface polymerization, leading to the well-defined latex-encapsulated nanocomposite structure. Various synthesis parameters such as the grafting amount of silane coupling agent, the initiator employed into the polymerization, and solvency to the encapsulation were investigated.


摘要 I
Abstract III
List of Tables XI
List of Figures XIII
Chapter 1 Introduction 1
1-1 Introduction of controlled/living polymerization 1
1-2 Introduction of Monodisperse Latex 5
1-2.1 Emulsion polymerization 5
1-2.2 Emulsifier-free emulsion polymerization 7
1-2.3 Dispersion polymerization 9
1-2.4 Precipitation polymerization 10
1-2.5 Other techniques 11
1-2.6 Applications of monodisperse latexes 11
1-3 Introduction of Pickering (solid-stabilized emulsion) emulsion 13
1-4 Flow chart of this work 15
References 16
Chapter 2 DPE Controlled/Living Radical Polymerization – Preheating Method and Preparation of Block copolymers 20
2-1 Introduction 20
2-2 Experimental 23
2-2.1 Materials 23
2-2.2 Bulk Polymerization 23
2-2.3 Preparation of DPE-capped macro-initiator 23
2-2.4 Preparation of PMMA-b-PBA block copolymer from DPE-capped PMMA macro-initiator 24
2-2.5 Characterization 24
2-3 Results and Discussion 25
A:Preparation of DPE-containing homopolymers by Two-stage Preheating Method 25
2-3.1A Reaction temperatures and polymerization without preheating treatment 25
2-3.2A Preheating treatment 26
2-3.3A Influence of monomer concentration in the step of preheating treatment 27
2-3.4A Influence of preheating time period 28
2-3.5A Influence of DPE 29
B:Preparation of PMMA-b-PBA block copolymer 30
2-3.1B Preparation of DPE-capped macro-initiator 30
2-4 Conclusions 33
A:Preparation of DPE-containing homopolymers by Two-stage Preheating Method 33
B:Preparation of PMMA-b-PBA block copolymers 33
2-5 References and Notes 47
Chapter 3 Preparation Novel Suspensions of ZnO/Living Block Copolymer Latex Nanoparticles via Pickering Emulsion Polymerization 48
3-1 Introduction 48
3-2 Experimental Section 51
3-2.1 Materials 51
3-2.1 Synthesis of ZnO/PSS- Nanoparticles 51
3-2.3 Preparation of PMMA-b-PBA Living Block Copolymer Latexes from Pickering Emulsion Polymerization 51
3-2.4 Fourier Transform Infrared (FTIR) Spectroscopy Experiments 52
3-2.5 Thermogravimetric Analysis (TGA) 52
3-2.6 X-ray diffraction (XRD) 53
3-2.7 Evaluation of Dispersion Stability 53
3-2.8 Dynamic Light Scattering Measurements (DLS) 53
3-2.9 Zeta Potential Measurements 54
3-2.10 Transmission Electron Microscopy (TEM) 54
3-2.11 Interfacial tension measurements 54
3-2.12 Polymer Characterizations 54
3-3 Results and Discussion 56
3-3.1 Synthesis and Characterization of ZnO/PSS- Nanocomposite Suspensions 56
3-3.1 Oil/Water Interfacial Properties of ZnO/PSS- Nanocomposites 57
3-3.3 Preparation of DPE-Capped Macroinitiator 59
3-3.4 Living Block Copolymer Latexes from Pickering Emulsion Polymerization 59
3-3.5 The Controlled Living Characters in Pickering Emulsion Polymerization 61
3-3.6 Long Term Colloidal Stability 63
3-4 Conclusions 65
3-5 References and Notes 82
Chapter 4 Emulsifier-Free Solid Stabilized Polymerization for the Preparation of Monodisperse Polymer/Silica Core/Shell Structure 86
4-1 Introduction 86
4-2 Experimental Section 88
4-2.1 Materials 88
4-2.2 Preparation of Polymer/Silica Core/Shell Nanocomposite Latexes by Emulsifier-Free Solid Stabilized Polymerization 88
4-2.3 Characterization of Polymer/Silica Core/Shell Nanocomposite Latexes. 89
4-3 Results and Discussions 91
4-3.1 Formation Mechanism of Emulsifier-Free Solid Stabilized Polymerization 91
4-3.2 Effect of the pH 92
4-3.3 Effect of the silica concentration 93
4-4 Conclusions 96
Chapter 5 Novel Synthesis of Multi-Scaled, Surfactant-Free Monodisperse Latexes via Alcoholic Dispersion Polymerization in a Mixed Ionic/Non-ionic Initiation System 107
5-1 Introduction 107
5-2 Experimental Section 110
5-2.1 Materials 110
5-2.2 Latex Preparation 110
5-2.3 Characterization 111
5-3 Results and Discussion 113
5-3.1 Soap-free Dispersion Polymerization in a Solely Ionic-Charged Initiator System 113
5-3.2 Mixed Initiation Approach 115
5-3.3 Effect of the Solvency 117
5-3.4 Effect of the Initiator 119
5-3.5 Effect of the Reaction Temperature 121
5-3.6 Preparation of large, stabilizer-free monodisperse Latexes in a One Step Process 122
5-4 Conclusions 124
5-5 References and Notes 143
Chapter 6 Surfactant-free dispersion polymerization as an Efficient Synthesis Route to a Successful Encapsulation of Nanoparticles 147
6-1 Introduction 147
6-2 Experimental Section 152
6-2.1 Materials 152
6-2.2 Silyation of Carbon Black 152
6-2.3 Preparation of Carbon Black/ Polymer Composite Latex by Soapless Dispersion Polymerization 153
6-2.4 Fourier Transform Infrared (FTIR) Spectroscopy Experiments 153
6-2.5 Thermogravimetric Analysis (TGA) 153
6-2.6 X-ray photoelectron spectroscopy (XPS) 154
6-2.7 29Si MAS Nuclear Magnetic Resonance (NMR) spectroscopy 154
6-2.8 Dynamic Light Scattering Measurements (DLS) 154
6-2.9 Zeta Potential Measurements 155
6-2.10 Scanning Electron Microscopy (SEM) 155
6-2.11 Transmission Electron Microscopy (TEM) 155
6-3 Results and Discussion 156
6-3.1 Characterization of silane-modified carbon black 156
6-3.2 Preparation of Carbon Black/Polymer Core/Shell Nanoparticles via Surfactant-free Dispersion Polymerization 157
6-3.3 Effect of the MSMA grafting amount 159
6-3.4 Effect of the Solvency 160
6-3.5 Effect of the monomer/CB ratio 162
6-3.6 Preparation of Other Kinds of Polymer-Encapsulated Nanoparticle Composite Latexes by Surfactant-free Dispersion Polymerization 163
6-4 Conclusions 165
6-5 References and Notes 179
Chapter 7 Conclusions 185
Appendix--Preparation of Monodisperse Latex from Coalescence Induced Pickering (Surfactant-Free) Emulsion Polymerization 190
A-1 Introduction 190
A-2 Experimental Section 194
A-2.1 Materials 194
A-2.2 Typical Coalescence Induced Pickering Emulsion Polymerization procedure 194
A-2.3 Dynamic Light Scattering Measurements 195
A-2.4 Static Light Scattering Measurements 195
A-2.5 Zeta Potential Measurements 195
A-2.5 Transmission Electron Microscopy (TEM) 196
A-2.6 Scanning Electron Microscopy (SEM) 196
A-2.7 Thermogravimetric Analysis (TGA) 196
A-2.8 Pyrene Fluorescence Measurements (FL) 196
A-3 Results and Discussion 197
A-3.1 The Criteria for Coalescence Induced Pickering Emulsion Polymerization 197
A-3.2 Influence of solid particles concentration 199
A-3.3 Variation of the Dispersed Phase Volume Fraction 200
A-3.4 Effect of the agitation rate 200
A-3.5 Monodisperse Latexes from Coalescence Induced Surfactant-Free Emulsion Polymerization 201
A-3.6 How do the surfactant-free droplets/latexes remained colloidal stable and effect of pH in the aqueous phase 202
A-3.7 The particle size evolutions in coalescence induced surfactant free emulsion polymerization 204
A-3.8 Effect of the hydrophobe 204
A-3.8 The choice of oil-soluble initiators and latex conductivity measurements 207
A-4 Conclusions 210
A-4 References and Notes 230



Chapter 1
(1)Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987-2988.
(2) Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1994, 27, 5238-5238.
(3) Kuo, K. H.; Chiu, W. Y.; Cheng, K. C. Polym Int 2008, 57, 730-737.
(4) Lee, C. F.; Yang, C. C.; Wang, L. Y.; Chiu, W.Y. Polymer 2005, 46 , 5514-5523.
(5) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3688.
(6) Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, 5457-5459.
(7) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H.; Macromolecules 1999, 32, 6977-6980.
(8) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559-5562.
(9) Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58, 379-410.
(10) Barner-Kowollik, C.; Perrier, S. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5715-5723.
(11) Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614-5615.
(12) Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921-2990.
(13) Matyjaszewski, K.; Patten, T. E.; Xia, J. H. J. Am. Chem. Soc. 1997, 119, 674-680.
(14) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721-1723.
(15) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689-3745.
(16) Krstina, J.; Moad, C. L.; Moad, G.; Rizzardo, E.; Berge, C. T. In A new form of controlled growth free radical polymerization, 2nd International Symposium on Free Radical Polymerization - Kinetics and Mechanisms, Genoa, Italy, May 26-31, 1996; Genoa, Italy, 1996; pp 13-23.
(17) Wieland, P. C.; Raether, B.; Nuyken, O. Macromol. Rapid. Commun. 2001, 22, 700-703.
(18) Raether, B.; Nuyken, O.; Wieland, P. C.; Bremser, W. Macromol. Symp. 2002, 177, 25-41.
(19) Viala, S.; Antonietti, M.; Tauer, K.; Bremser, W. Polymer 2003, 44, 1339-1351.
(20) Viala, S.; Tauer, K.; Antonietti, M.; Lacik, I.; Bremser, W. Polymer 2005, 46, 7843-7854
(21) Luo, Y. D.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6789-6800.
(22) Chou, I. C.; Luo, Y. D.; Chiu, W. Y. Polymer 2010, 51, 2527-2532.
(23) Stoeckel, N.; Wieland, P. C.; Nuyken, O. Polym. Bull. 2002, 49, 243-250.
(24) Tasdelen, M. A.; Degirmenci, M.; Yagci, Y.; Nuyken, O. Polym. Bull. 2003, 50, 131-138.
(25) Chen, D.; Fu, Z. Shi, Y. Polym. Bull. 2008, 60, 259-269.
(26) Ugelstadt, J.; Berge, A.; Elingsen, T.; Smid, R.; Nielsen, T. N. Prog. Polym. Sci. 1992, 17, 87–161.
(27) Horak, D. Acta Polym. 1996, 47, 20–28.
(28) Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.; Kornfeld, D. M.; Vicente, F. A. J. Dispersion Sci. Technol. 1984, 5, 231–246.
(29) Arshady, R. Colloid Polym. Sci. 1992, 270, 717–732.
(30) Woods, M. E.; Dodge, J. S.; Krieger, I. M.; Pierce, P. E. J. Paint Technol. 1968, 40, 541–548.
(31) Chern, C. S. Prog. Polym. Sci. 2006, 31, 443–486.
(32) Liu, W.; Yang, X. L.; Ho, W. S. W. J. Pharm. Sci. 2011, 100, 75–93.
(33) Yuan, Q.; Cayre, O. J.; Manga, M.; Williams, R. A.; Biggs, S. Soft Matter 2010, 6, 1580–1588.
(34) Wang, P. C.; Lee, C. F.; Young, T. H.; Lin, D. T.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1342–1356.
(35) Nagao, D.; Yokoyama, M.; Yamauchi, N.; Matsumoto, H. Langmuir 2008, 24, 9804–9808.
(36) Wang, L. Y.; Lin, Y. J.; Chiu, W. Y. Synth. Met. 2001, 119, 155–156.
(37) Kawaguchi, S.; Ito, K. Adv. Polym. Sci. 2005, 175, 299–328.
(38) Cheng, C. M.; Micale, F. J.; Vanderhoff, J. W.; El -Aasser, M. S. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 235–244.
(39) Ma, Z. Y.; Guan, Y. P.; Liu, H. Z. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3433–3439.
(40) Ober, C. K.; Lok, K. P.; Hair, M. L. J. Polym. Sci., Polym. Lett. Ed. 1985, 23, 103–108.
(41) Li, W. H.; Stöver, H. D. H. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1543–1551.
(42) Downey, J. S.; Frank, R. S.; Li, W. H.; Stöver, H. D. H. Macromolecules 1999, 32, 2838–2844.
(43) Wang, J. F.; Cormack, P. A. G.; Sherrington, D. C.; Khoshdel, E. Angew. Chem., Int. Ed. 2003, 42, 5336–5338.
(44) Capek, I.; Chern, C. S. New Polymerization Techniques and Synthetic Methodologies; Springer: Berlin, 2001; Vol. 155, pp 101–165.
(45) Antonietti, M.; Landfester, K. Prog. Polym. Sci. 2002, 27, 689–757.
(46) Luo, Y. D.; Chiu, W. Y.; Dai, C. A. Polym. Eng. Sci. 2009, 49, 1043–1049.
(47) Cao, Z.; Ziener, U.; Landfester, K. Macromolecules 2010, 43, 6353–6360.
(48) Cheng, S. Q.; Guo, Y.; Zetterlund, P. B. Macromolecules 2010, 43, 7905–7907.
(49) Antonietti, M.; Bremser, W.; Muschenborn, D.; Rosenauer, C.; Schupp, B. Macromolecules 1991, 24, 6636–6643.
(50) Kim, J. W.; Larsen, R. J.; Weitz, D. A. J. Am. Chem. Soc. 2006, 128, 14374–14377.
(51) Park, J. G.; Forster, J. D.; Dufresne, E. R. J. Am. Chem. Soc. 2010, 132, 5960–5961.
(52) Hou, W. H.; Lloyd, T. B. J. Appl. Polym. Sci. 1992, 45, 1783.
(53) Hou, W. H.; Lobuglio, T. M. J. Appl. Polym. Sci. 1994, 54, 1363.
(54) Partch, R.E.; Matijevic, E.; Hodgson, A. W.; Aiken, B. E. J. Polym. Sci. 1983, A21, 961.
(55) Partch, R.E.; Nakamura, K.; Wolfe, K. J.; Matijevic, E. J. Colloid Interface Sci. 1985, 105, 560.
(56) Awan, M. A.; Dimonie, V. L.; El-Aasser, M.S. Polym. Prepr. 1994, 35, 551.

Chapter 2
(1) Wieland, P. C.; Raether, B.; Nuyken, O. Macromol Rapid Commun 2001, 22, 700-703.
(2) Viala, S.; Antonietti, M.; Tauer, K.; Bremser, W. Polymer 2003, 44, 1339-1351.
(3) Viala, S.; Tauer, K.; Antonietti, M.; Lacik, I.; Bremser, W.; Polymer, 2005, 46, 7843-7854
(4) Hopff, H.; Lussi, H. Makromol Chem 1963, 62, 31-39.
(5) Luo, Y. D.; Chou, I. C.; Chiu, W. Y.; Lee, C. F. J Polym Sci A: Polym Chem 2009, 47, 4435-4445.
(6) Kos, T. ; Strissel, C. ; Yagci, Y. ; Nugay, T. ; Nuyken, O. ; Eur Polym J 2005, 41, 1265-1271.
(7) Luo, Y. D.; Chiu, W. Y. J Polym Sci A: Polym Chem 2009, 47, 6789-6800.
(8) Stoeckel, N.; Wieland, P. C.; Nuyken, O. J Polym Sci A: Polym Chem 2002, 40, 3725-3733.
(9) Stoeckel, N.; Wieland, P. C.; Nuyken, O. Polym Bull 2002, 49, 243-250.
(10) Tasdelen, M. A.; Degirmenci, M.; Yagci, Y.; Nuyken, O. Polym Bull 2003, 50, 131-138.
(11) Chen, D.; Fu, Z.; Shi, Y. Polym Bull 2008, 60, 259-269.
(12) Chen, D.; Fu, Z.; Shi, Y. J Appl Polym Sci 2009, 111, 1581-1587.
(13) Theis, A.; Feldermann, A.; Charton, N.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Macromolecules 2005, 38, 2595-2605.
(14) Brandup, J. I.; Grulke, E. Polymer Handbook. Wiley & Sons: New York (1989).

Chapter 3
(1) Ramsden, W. Proc. R. Soc. London 1903, 72, 156.
(2) Pickering, S. U. J. Chem. Soc. 1907, 91, 2001.
(3) Schulman, J. H.; Leja, J. Trans. Faraday Soc. 1954, 50, 598.
(4) Tambe, D. E.; Sharma, M. M. J. Colloid Interface Sci. 1992, 157, 244–253.
(5) Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41.
(6) Tambe, D. E.; Sharma, M. M. Adv. Colloid Interface Sci. 1994, 52, 1–63.
(7) Midmore, B. R. Colloids Surf. A. 1998, 145, 133–143.
(8) Binks, B. P.; Lumsdon, S. O. Phys. Chem. Chem. Phys. 1999, 1, 3007–3016.
(9) Ashby, N. P.; Binks, B. P. Phys. Chem. Chem. Phys. 2000, 2, 5640–5646.
(10) Yang, F.; Liu, S.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. J. Colloid Interface Sci. 2006, 302, 159–169.
(11) Vignati, E.; Piazza, R.; Lockhart, T. P. Langmuir 2003, 19, 6650–6656.
(12) Horozov, T. S.; Binks, B. P. Angew. Chem., Int. Ed. 2006, 45, 773–776.
(13) Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226–229.
(14) Cauvin, S.; Colver, P. J.; Bon, S. A. F. Macromolecules 2005, 38, 7887–7889.
(15) Voorn, D. J.; Ming, W.; van Herk, A. M. Macromolecules 2006, 39, 2137–2143.
(16) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987–2988.
(17) Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1994, 27, 5238–5238.
(18) Kuo, K. H.; Chiu, W. Y.; Cheng, K. C. Polym Int 2008, 57, 730–737.
(19) Lee, C. F.; Yang, C. C.; Wang, L. Y.; Chiu, W.Y. Polymer 2005, 46 , 5514–5523.
(20) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661–3688.
(21) Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, 5457–5459.
(22) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H.; Macromolecules 1999, 32, 6977–6980.
(23) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559–5562.
(24) Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58, 379–410.
(25) Barner-Kowollik, C.; Perrier, S. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5715–5723.
(26) Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614–5615.
(27) Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921–2990.
(28) Matyjaszewski, K.; Patten, T. E.; Xia, J. H. J. Am. Chem. Soc. 1997, 119, 674–680.
(29) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721–1723.
(30) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689–3745.
(31) Wieland, P. C.; Raether, B.; Nuyken, O. Macromol. Rapid. Commun. 2001, 22, 700-–703.
(32) Raether, B.; Nuyken, O.; Wieland, P. C.; Bremser, W. Macromol. Symp. 2002, 177, 25–41.
(33) Viala, S.; Antonietti, M.; Tauer, K.; Bremser, W. Polymer 2003, 44, 1339–1351.
(34) Viala, S.; Tauer, K.; Antonietti, M.; Lacik, I.; Bremser, W. Polymer 2005, 46, 7843–7854
(35) Luo, Y. D.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6789–6800.
(36) Chou, I. C.; Luo, Y. D.; Chiu, W. Y. Polymer 2010, 51, 2527–2532.
(37) Stoeckel, N.; Wieland, P. C.; Nuyken, O. Polym. Bull. 2002, 49, 243–250.
(38) Tasdelen, M. A.; Degirmenci, M.; Yagci, Y.; Nuyken, O. Polym. Bull. 2003, 50, 131–138.
(39) Chen, D.; Fu, Z. Shi, Y. Polym. Bull. 2008, 60, 259–269.
(40) Sacanna, S.; Philipse, A. P. Adv. Mater. 2007, 19, 3824–3826.
(41) Yang, J.; Hasell, T.; Wang, W.; Li, J.; Brown, P. D.; Poliakoff, M. J. Mater. Chem. 2008, 18, 998–1001.
(42) He, Y. Mater. Chem. Phys. 2005, 92, 134–137.
(43) Liu, Y.; Chen, X.; Wang, R.; Xin, J. H. Mater. Lett. 2006, 60, 3731–3734.
(44) Binks, B. P.; Philip, J.; Rodrigues, J. A. Langmuir 2005, 21, 3296–3302.
(45) Binks, B. P.; Whitby, C. P. Colloids Surf. A. 2005, 253, 105–115.
(46) Chen, J. H.; Cheng, C.-Y.; Chiu, W.-Y.; Lee, C.-F.; Liang, N.-Y. Eur. Polym. J. 2008, 44, 3271–3279.
(47) Jeng, J.; Chen, T. Y.; Lee, C. F.; Liang, N. Y.; Chiu, W. Y. Polymer 2008, 49, 3265–3271.
(48) Luo, Y. D.; Chou, I. C.; Chiu, W. Y.; Lee, C. F. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4435–4445.
(49) Shim, J. W.; Kim, J. W.; Han, S. H.; Chang, I. S.; Kim, H. K.; Kang, H. H.; Lee, O. S.; Suh, K. D. Colloids Surf. A. 2002, 207, 105–111.
(50) Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38, 325–343.
(51) Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38, 345–365.
(52) Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. J. Phys. Chem. B 2006, 110, 19543–19551.
(53) Kutuzov, S.; He, J.; Tangirala, R.; Emrick, T.; Russell, T. P.; Böker, A. Phys. Chem. Chem. Phys. 2007, 9, 6351–6358.
(54) Du, K.; Glogowski, E.; Emrick, T.; Russell, T. P.; Dinsmore, A. D. Langmuir 2010, 26, 12518–12522.
(55) Maehata, H.; Buragina, C.; Cunningham, M.; Keoshkerian, B. Macromolecules 2007, 40, 7126–7131.
(56) Butte, A.; Storti, G.; Morbidelli, M. Macromolecules 2001, 34, 5885–5896.
(57) Charleux, B. Macromolecules 2000, 33, 5358–5365.
(58) Zetterlund, P. B.; Okubo, M. Macromolecules 2006, 39, 8959–8967.

Chapter 4
(1) Hergeth, W. D.; Schmutzler, K.; Wartewig, S. Makromol. Chem., Macromol. Symp. 1990, 31, 123–142.
(2) McDonald, C. J.; Devon, M. J. AdV. Colloid Interface Sci. 2002, 99, 181–213.
(3) Mock, E. B.; Bruyn, H. D.; Hawkett, B. S.; Gilbert, R. G.; Zukoski, C. F. Langmuir 2006, 22, 4037–4043.
(4) Okubo, M.; Kanaida, K.; Matsumoto, T. Colloid Polym. Sci. 1987, 265, 876–881.
(5) Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Guentner, R.; Scherf, U. Nat. Mater. 2003, 2, 408–412.
(6) Pommersheim, R.; Schrezenmeir, J.; Vogt, W. Macromol. Chem. Phys. 1994, 195, 1557–1567.
(7) Caruso, F.; Caruso, R. A.; Mo‥hwald, H. Science 1998, 282, 1111–1114.
(8) Vincent, B.; Young, C. A.; Tadros, T. F. J. Chem. Soc., Faraday Trans. 1 1980, 76, 665–673.
(9) Percy, M. J.; Amalvy, J. I.; Randall, D. P.; Armes, S. P.; Greaves, S. J.; Watts, J. F. Langmuir 2004, 20, 2184–2190.
(10) Schmid, A.; Tonnar, J.; Armes, S. P. Adv. Mater. 2008, 20, 3331–3336.
(11) Sacanna, S.; Kegel, W. K.; Philipse, A. P. Phys. Rev. Lett. 2007, 98, 158301.
(12) Sacanna, S.; Philipse, A. P. Adv. Mater. 2007, 19, 3824–3826.
(13) Walther, A.; Hoffmann, M.; Muller, A. H. E. Angew. Chem., Int. Ed. 2008, 47, 711–714.
(14) Gill, M.; Mykytiuk, J.; Armes, S. P.; Edwards, J. L.; Yeates, T.; Moreland, P. J. Mollett, C. J. Chem. Soc., Chem. Commun. 1992, 108.
(15) Bourgeat-Lami, E.; Lang, J. J. Colloid Interface Sci. 1998, 197, 293–308.
(16) Chen, M.; Zhou, S.; You, B.; Wu, L. Macromolecules 2005, 38, 6411–6417.
(17) Schmid, A.; Fujii, S.; Armes, S. P.; Leite, C. A. P.; Galembeck, F.; Minami, H.; Saito, N.; Okubo, M. Chem. Mater. 2007, 19, 2435–2445.
(18) Colver, P. J.; Colard, C. A. L.; Bon, S. A. F. J. Am. Chem. Soc. 2008, 130, 16850–16851.

Chapter 5
(1)Barrett, K. E. J., Ed. Dispersion Polymerization in Organic Media; Wiley-Interscience: New York, 1975.
(2)Almog, Y.; Reich, S.; Levy, M. Br. Polym. J 1982, 14, 131–136.
(3)Ober, C. K.; Lok, K. P.; Hair, M. L. J. Polym. Sci., Polym. Lett. Ed. 1985, 23, 103–108.
(4)Lok, K. P.; Ober, C. K. Can. J. Chem. 1985, 63, 209–216.
(5)Shen, S.; Sudol, E. D.; El-Aasser, M. S. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 1393–1402.
(6)Pain, A. J.; Luymes, W.; McNulty, J. Macromolecules 1990, 23, 3109–3117.
(7)Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W. J. Polym. Sci., Part A 1986, 24, 2995–3007.
(8)Ho, C. H.; Chen, S. A.; Amiridis, M. D.; Van Zee, J. W. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2907–2915.
(9)Shen, S.; Sudol, E. D.; El-Aasser, M. S. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1087–1100.
(10)Horak, D. Acta Polym. 1996, 47, 20–28.
(11)Baines, F. L.; Dionisio, S.; Billingham, N. C.; Armes, S. P. Macromolecules 1996, 29, 3096–3102.
(12)Ma, Y. H.; Yang, W. T. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2678–2685.
(13)Song, J. S.; Tronc, F.; Winnik, M. A. J. Am. Chem. Soc. 2004, 126, 6562–6563.
(14)Yasuda, M.; Seki, H.; Yokoyama, H.; Ogino, H.; Ishimi, K.; Ishikawa, H. Macromolecules 2001, 34, 3261–3270.
(15)Kawaguchi, S.; Ito, K. Adv. Polym. Sci. 2005, 175, 299–328.
(16)Capek, I.; Nguyen, S. H.; Berek, D. Polymer 2000, 41, 7011–7016.
(17)Lee, J.; Ha, J. U.; Choe, S.; Lee, C.-S.; Shim, S. E. J. Colloid InterfaceSci. 2006, 298, 663−671.
(18)Chuang, C. Y.; Chiu, W. Y.; Don, T. M. J. Appl. Polym. Sci. 2011, 120, 1659−1670.
(19)Ahmed, S. F.; Poehlein, G. W. Ind. Eng. Chem. Res. 1997, 36, 2597–2604.
(20)Minami, H.; Yoshida, K.; Okubo, M. Macromol. Rapid Commun. 2008, 29, 567−572.
(21)Ha, S. T.; Park, O. O.; Im, S. H. Macromol. Res. 2010, 18, 935−943.
(22)Ugelstadt, J.; Berge, A.; Elingsen, T.; Smid, R.; Nielsen, T. N. Prog. Polym. Sci. 1992, 17, 87-161.
(23)Okubo, M.; Izumi, J.; Hosotani, T.; Yamashita, T. Colloid Polym. Sci. 1997, 275, 797–801.
(24)Okubo, M.; Izumi, J. Colloids Surf., A 1999, 160, 321–321.
(25)Takahashi, K.; Nagai, K. Polymer 1996, 37, 1257–1266.
(26)Shaffer, K. A.; Jones, T. A.; Canelas, D. A.; DeSimone, J. M. Macromolecules 1996, 29, 2704–2706.
(27)Lacroix-Desmazes, P.; Guyot, A. Macromolecules 1996, 29, 4508–4515.
(28)Kawaguchi, S.; Winnik, M. A. Macromolecules 1995, 28, 1159–1166.
(29)Yildiz, U.; Hazer, B.; Tauer, K. Polym. Chem. 2012, 3, 1107–1118.
(30)Okubo, M.; Fujii, S.; Maenaka, H.; Minami, H. Colloid Polym. Sci. 2002, 280, 183–187.
(31)Shay, J. S.; English, R. J.; Spontak, R. J.; Balik, C. M.; Khan, S. A. Macromolecules 2000, 33, 6664–6671.
(32)Amalvy, J. I.; Unali, G.-F.; Li, Y.; Granger-Bevan, S.; Armes, S. P.; Binks, B. P.; Rodrigues, J. A.; Whitby, C. P. Langmuir 2004, 20, 4345−4354.
(33)McKee, J. R.; Ladmiral, V.; Niskanen, J.; Tenhu, H.; Armes, S. P. Macromolecules 2011, 44, 7692−7703.
(34)Fujii, S.; Aono, K.; Suzaki, M.; Hamasaki, S.; Yusa, S. -I.; Nakamura, Y. Macromolecules 2012, 45, 2863−2873.
(35)Zhang, W. M.; Gao, J.; Wu, C. Macromolecules 1996, 30, 6388−6390.
(36)Yamada, Y.; Sakamoto, T.; Gu, S.; Konno, M. J. Colloid Interface Sci. 2004, 281, 249–252.
(37)Downey, J. S.; Frank, R. S.; Li, W. H.; Stover, H. D. H. Macromolecules 1999, 32, 2838−2844.
(38)Li, W. H.; Stover, H. D. H. Macromolecules 2000, 33, 4354−4360.
(39)Homola, A. M.; Inoue, M.; Robertson, A. A. J. Appl. Polym. Sci. 1975, 19, 3077−3086.
(40)Chonde Y.; Krieger, I. M. J. Appl. Polym. Sci. 1981, 26, 1819−1827.
(41)Okubo, M.; Yamada, A.; Shibao, S.; Nakamae, K.; Matsumoto, T. J. Appl. Polym. Sci. 1981, 26, 1675−1679.
(42)Twigt, F.; Piet, P.; German, A. L. Eur. Polym. J. 1991, 27, 939−945.
(43)Liu, Z.; Xiao, H. Polymer 2000, 41, 7023–7031.
(44)Ngai, T.; Wu, C. Langmuir 2005, 21, 8520−8525.
(45)Kim, G.; Lim, S.; Lee, B. H.; Shim, S. E.; Choe, S. Polymer 2010, 51, 1197–1205.
(46)Li, Z.; Cheng, H.; Han, C. C. Macromolecules 2012, 45, 3231−3239.
(47)Vanderhoff, J. W.; Vitkuske, J. F.; Bradford, E. B.; Alfrey, T. J. Polym. Sci. 1956, 20, 225−234.
(48)Poehlein, G. W.; Vanderhoff, J. W. J. Polym. Sci.: Polym. Chem. 1973, 11, 447−452.
(49)Zhang, F.; Bai, Y. W.; Ma, Y. H.; Yang, W. T. J. Colloid Interface Sci. 2009, 334, 13–21.
(50)Zhang, F.; Cao, L.; Yang, W. T. Macromol. Chem. Phys. 2010, 211, 744–751.
(51)Zhang, F.; Ma, Y.; Liu, L. Y.; Yang, W. T. J. Phys. Chem. B 2010, 114, 10970–10978.
(52)Shim, S. E.; Kim, K.; Oh, S.; Choe, S. Macromol. Res. 2004, 12, 240−245.
(53)Schmid, A.; Fujii, S.; Armes, S. P. Langmuir 2006, 22, 4923–4927.
(54)Kettlewell, S. L.; Schmid, A.; Fujii, S.; Dupin, D.; Armes, S. P. Langmuir 2007, 23, 11381–11386.
(55)Ober, C. K.; Hair, M. L. J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 1395–1407.
(56)Lacroix-Desmazes, P.; Guillot, J. J. Polym. Sci, Part B: Polym. Phys. 1998, 36, 325–335.
(57)Pain, A. J.; Luymes, W.; McNulty, J. Macromolecules 1990, 23, 3104–3109.
(58)Goodall, A. R.; Wilkinson, M. C.; Hearn, J. J. Polym. Sci.: Polym. Chem. 1977, 15, 2193−2218.
(59)Feeney, P. J.; Napper, D. H.; Gilbert, R. G. Macromolecules 1987, 20, 2922−2930.

Chapter 6
(1)Widiyandari, H.; Iskandar, F.; Hagura, N.; Okuyama, K. J. Appl. Polym. Sci. 2008, 108, 1288−1297.
(2)Liu, H.; Wen, S.; Wang, J.; Zhu, Y. J. Appl. Polym. Sci. 2012, 123, 3255−3260.
(3)Nguyen, D.; Zondanos, H. S.; Farrugia, J. M.; Serelis, A. K.; Such, C. H.; Hawkett, B. S. Langmuir 2008, 24, 2140–2150.
(4)Kim, M. K.; Kim, C. A.; Ahn, S. D.; Kang, S-R.; Suh, K. S. Synth. Met. 2004, 146, 197–199.
(5)Casado, R. M.; Lovell, P. A.; Navabpour, P.; Stanford, J. L. Polymer 2007, 48, 2554–2563.
(6)Werts, M. P. L.; Brochon, B. C.; Hebraud, A.; Hadziioannou, G. Chem. Mater. 2008, 20, 1292–1298.
(7)Wang, P. C.; Lee, C. F.; Young, T. H.; Lin, D. T.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1342–1356.
(8)Liu, Y.; Miyoshi, H.; Nakamura, M. Int. J. Cancer 2007, 120, 2527–2537.
(9)Ramos, J.; Forcada,J. Langmuir 2011, 27, 7222–7230.
(10)Ho, K. M.; Li, P. Langmuir 2008, 24, 1801–1807.
(11)Radhakrishnan, B.; Constable, A. N.; Brittain, W. J. Macromol. Rapid Commun. 2008, 29, 1828−1833.
(12)Aguirre, M.; Paulis, M.; Leiza, J. R. J. Mater. Chem. A 2013, 1, 3155–3162.
(13)Freris, I.; Cristofori, D.; Riello, P.; Benedetti, A. J. Colloid InterfaceSci. 2009, 331, 351–355.
(14)Salek, P.; Korecka, L; Horak, D.; Petrovsky, E.; Kovarova, J.; Metelka, R.; Cadkova, M.; Bilkova, Z. J. Mater. Chem. 2011, 21, 14783–14792.
(15)Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, 5775–5780.
(16)Tiarks, F.; Landfester, K.; Antonietti, M. Macromol. Rapid Commun. 2001, 202, 51−60.
(17)Liu, X.; Guan, Y.; Ma, Z.; Liu, H. Langmuir 2004, 20, 10278–10282.
(18)Zhang, S. W.; Zhou, S. X.; Weng, Y. M.; Wu, L. M. Langmuir 2005, 21, 2124–2128.
(19)Lu, S.; Forcada, J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4187–4203.
(20)Faridi-Majidi, R.; Sharifi-Sanjani, N.; Agend, F. Thin Solid Films 2006, 515, 368–374.
(21)Faridi-Majidi, R.; Sharifi-Sanjani, N. J. Appl. Polym. Sci. 2007, 105, 1244−1250.
(22)Zhang, Q.; Xie, G.; Zhang, H.; Zhang, J.; He, M. J. Appl. Polym. Sci. 2007, 105, 3525–3530.
(23)Lu, S.; Ramos, J.; Forcada, J. Langmuir 2007, 23, 12893–12900.
(24)Qian, Z.; Zhang, Z.; Chen, Y. J. Colloid Interface Sci. 2008, 327, 354–361.
(25)Luo, Y. D.; Dai, C. A.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1014–1024.
(26)Luo, Y. D.; Dai, C. A.; Chiu, W. Y. J. Appl. Polym. Sci. 2009, 112, 975–984.
(27)Mahdavian, A. R.; Sarrafi, Y.; Shabankareh, M. Polym. Bull. 2009, 63, 329–340.
(28)Costoyas, A.; Ramos, J.; Forcada, J. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 935–948.
(29)Lu, S.; Qu, R.; Forcada, J. Mater. Lett. 2009, 63, 2539–2541.
(30)van Berkel, K. Y.; Hawker, C. J. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1594–1606.
(31)Han, H.; Lee, J.; Park, D. W.; Shim, S. E. Macromol. Res. 2010, 18, 435−441.
(32)Paquet, C.; Page, L.; Kell, A.; Simard, B. Langmuir 2010, 26, 5388–5396.
(33)Wu, Y.; Zhang, Y.; Xu, J.; Chen, M.; Wu, L. J. Colloid Interface Sci. 2010, 343, 18–24.
(34)Hu, J.; Chen, M.; Wu, L. Polym. Chem. 2011, 2, 760–772.
(35)Lan, F.; Liu, K. X.; Jiang, W.; Zeng, X. B.; Wu, Y.; Gu, Z. W. Nanotechnology 2011, 22, 225604.
(36)Gao, Y.; Song, Y.; Zheng, Q. Colloids Surf., A 2012, 411, 40–49.
(37)Fukui, Y.; Fujimoto, K. J. Mater. Chem. 2012, 22, 3493–3499.
(38)Bourgeat-Lami, E.; Farzi, G. A.; David, L.; Putaux, J. L.; McKenna, T. F. L. Langmuir 2012, 28, 6021–6031.
(39)Dou, J.; Zhang, Q.; Ma, M.; Gu, J. J. Magn. Magn. Mater. 2012, 324, 3078–3082.
(40)Oyama, H. T.; Sprycha, R.; Xie, Y.; Partch, R. E.; Matijevic, E. J. Colloid Interface Sci. 1993, 160, 298–303.
(41)Huang, C. L.; Partch, R. E.; Matijevic, E. J. Colloid Interface Sci. 1995, 170, 275–283.
(42)Bourgeat-Lami, E.; Lang, J. J. Colloid Interface Sci. 1998, 197, 293–308.
(43)Bourgeat-Lami, E.; Lang, J. J. Colloid Interface Sci. 1999, 210, 281–289.
(44)Sondi, I.; Fedynyshyn, T. H.; Sinta, R.; Matijevic, E. Langmuir 2000, 16, 9031–9034.
(45)Gu, S.; Kondo, T.; Konno, M. J. Colloid Interface Sci. 2004, 272, 314–320.
(46)Yu, D. -G.; An, J. H.; Bae, J. Y.; Kim, S.; Lee, Y. E.; Ahn, S. D.; Kang, S-Y.; Suh, K. S. Colloids Surf., A 2004, 245, 29–34.
(47)Haldorai, Y.; Lyoo, W. S.; Noh, S. K.; Shim, J-J. React. Funct. Polym. 2010, 70, 393–399.
(48)Nguyen, D.; Duguet, E.; Bourgeat-Lami, E.; Ravaine, S. Langmuir 2010, 26, 6086–6090.
(49)Nguyen, D.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. J. Mater. Chem. 2010, 20, 9392–9400.
(50)Donescu, D.; Raditoiu, V.; Spataru, C. I.; Somoghi, R.; Ghiurea, M.; Radovici, C.; Fierascu, R. C.; Schinteie, G.; Leca, A.; Kuncser, V. Eur. Polym. J. 2012, 48, 1709–1716.
(51)Song, Z.; Daniels, E. S.; Sudol, E. D.; Gilchrist, J. F.; Klein, A.; El-Aasser, M. S. J. Appl. Polym. Sci. 2013, 127, 2635−2640.
(52)Cardon, L.; Deckers, J.; Verberckmoes, A.; Ragaert, K.; Delva, L.; Shahzad, K.; Vleugels, J.; Kruth, J. -P. J. Appl. Polym. Sci. 2013, 128, 2121−2128.
(53)Luna-Xavier, J. L.; Guyot, A.; Bourgeat-Lami, E. J. Colloid InterfaceSci. 2002, 250, 82–92.
(54)Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z. Mater. Lett. 2004, 58, 3126–3130.
(55)Monteil, V.; Stumbaum, J.; Thomann, R.; Mecking, S. Macromolecules 2006, 39, 2056–2062.
(56)Mahdavian, A. R.; Ashjari, M.; Makoo, A. B. Eur. Polym. J. 2007, 43, 336–344.
(57)Qu, A.; Wen, X.; Pi, P.; Cheng, J.; Yang, Z. J. Colloid InterfaceSci. 2008, 317, 62–69.
(58)Pimpha, N.; Chaleawlert-umpon, S.; Sunintaboon, P. Polymer 2012, 53, 2015–2022.
(59)Nguyen, D.; Zondanos, H. S.; Farrugia, J. M.; Serelis, A. K.; Such, C. H.; Hawkett, B. S. Langmuir 2008, 24, 2140–2150.
(60)Ali, S. I.; Heuts, J. P. A.; Hawkett, B. S.; van Herk, A. M. Langmuir 2009, 25, 10523–10533.
(61)Garnier, J.; Warnant, J.; Lacroix-Desmazes, P. Dufils, P. E.; Vinas, J.; Vanderveken, Y.; van Herk, A. M. Macromol. Rapid Commun. 2012, 33, 1388−1392.
(62)Zgheib, N.; Putaux, J-L.; Thill, A.; Bourgeat-Lami, E.; D’Agosto, F.; Lansalot, M. Polym. Chem. 2013, 4, 607–614.
(63)Valente, M. A.; Costa, L. C.; Mendiratta, S. K.; Henry, F.; Ramanitra, L. Solid State Commun. 1999, 112, 67–72.
(64)Wang, P. C.; Chiu, W. Y.; Lee, C. F.; Young, T. H. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5695–5705.
(65)Zhang, F.; Zhang, H.; Su, Z. Polym. Bull. 2008, 60, 251–257.
(66)Yamauchi, N.; Nagao, D.; Konno, M. Colloid Polym. Sci. 2010, 288, 55–61.
(67)Rong, Y.; Chen, H. Z.; Wu, G.; Wang, M. Mater. Chem. Phys. 2005, 91, 370–374.
(68)Liu, G.; Wang, H.; Yang, X.; Li, L. Eur. Polym. J. 2009, 45, 2023–2032.
(69)Yang, J.; Wang, T. J.; He, H.; Wei, F.; Jin, Y. Ind. Eng. Chem. Res. 2003, 42, 5568−5575.
(70)Gill, M.; Mykytiuk, J.; Armes, S. P.; Edwards, J. L.; Yeates, T.; Moreland, P. J. Mollett, C. J. Chem. Soc., Chem. Commun. 1992, 108.
(71)Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913–6920.
(72)Percy, M. J.; Amalvy, J. I.; Randall, D. P.; Armes, S. P.; Greaves, S. J.; Watts, J. F. Langmuir 2004, 20, 2184–2190.
(73)Shim, S. E.; Kim, K.; Oh, S.; Choe, S. Macromol. Res. 2004, 12, 240−245.
(74)Schmid, A.; Fujii, S.; Armes, S. P. Langmuir 2006, 22, 4923–4927.
(75)Kettlewell, S. L.; Schmid, A.; Fujii, S.; Dupin, D.; Armes, S. P. Langmuir 2007, 23, 11381–11386.
(76)Zhang, F.; Ma, Y.; Liu, L. Y.; Yang, W. T. J. Phys. Chem. B 2010, 114, 10970–10978.
(77)Zhang, F.; Cao, L.; Yang, W. T. Macromol. Chem. Phys. 2010, 211, 744–751.
(78)Chou, I. C.; Chiu, W. Y.; Macromolecules 2013, 46, 3561–3569.
(79)Glaser, R. H.; Wilkes, G. L. J. Non-Cryst. Solids 1989, 113, 73–87.
(80)Percy, M. J.; Michailidou, V.; Armes, S. P.; Perruchot, C.; Watts, J. F.; Greaves, S. J. Langmuir 2003, 19, 2072–2079.
(81)Ober, C. K.; Lok, K. P.; Hair, M. L. J. Polym. Sci., Polym. Lett. Ed. 1985, 23, 103–108.
(82)Tseng, C. M.; Lu, Y. Y.; El-Aasser, M. S.; Vanderhoff, J. W. J. Polym. Sci., Part A 1986, 24, 2995–3007.
(83)Ho, C. H.; Chen, S. A.; Amiridis, M. D.; Van Zee, J. W. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2907–2915.
(84)Minami, H.; Yoshida, K.; Okubo, M. Macromol. Rapid Commun. 2008, 29, 567−572.
(85)Wang, Q. J. Colloid InterfaceSci. 1991, 145, 595−597.
(86)Puertas, A. M.; Fernandez-Barbero, A.; de las Nieves, F. J. Phys. A 2002, 304, 340−354.
(87)Luo, Y. D.; Chen, J. H.; Huang, C. I.; Chiu, W. Y. J. Appl. Polym. Sci. 2010, 116, 2275−2284.
(88)Levy, M.; Szwarz, M. J. Chem. Phys. 1954, 22, 1621−1622.
(89)Yoshikawa, J.; Tsubokawa, N. Polym. J. 1996, 28, 317−322.

Appendix
(1)Ramsden, W. Proc. R. Soc. London 1903, 72, 156.
(2)Pickering, S. U. J. Chem. Soc. 1907, 91, 2001.
(3)Binks, B. P.; Lumsdon, S. O. Phys. Chem. Chem. Phys. 1999, 1, 3007–3016.
(4)Midmore, B. R. Colloids Surf., A. 1998, 145, 133–143.
(5)Vignati, E.; Piazza, R.; Lockhart, T. P. Langmuir 2003, 19, 6650–6656.
(6)Pieranski, P. Phys. Rev. Lett. 1980, 45, 569–572.
(7)Binks, B. P.; Lumsdon, S. O. Langmuir 2001, 17, 4540–4547.
(8)Denkov, N. D.; Ivanov, I. B.; Kralchevsky, P. A.; Wasan, D. T. J. Colloid Interface Sci. 1992, 150, 589–593.
(9)Kaptay, G. Colloids Surf., A. 2006, 282, 387–401.
(10)Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12, 2374–2384.
(11)Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226-229.
(12)Dong, L.; Johnson, D. Langmuir 2003, 19, 10205–10209.
(13)Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D. Angew. Chem., Int. Ed. 2004, 43, 458–462.
(14)Tarimala, S.; Ranabothu, S. R.; Vernetti, J. P.; Dai, L. L. Langmuir 2004, 20, 5171–5173.
(15)Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. J. Phys. Chem. B 2006, 110, 19543–19551.
(16)Kutuzov, S.; He, J.; Tangirala, R.; Emrick, T.; Russell, T. P.; Böker, A. Phys. Chem. Chem. Phys. 2007, 9, 6351–6358.
(17)Sacanna, S.; Kegel, W. K.; Philipse, A. P. Phys. Rev. Lett. 2007, 98, 158301.
(18)Suzuki, D.; Tsuji, S.; Kawaguchi, H. J. Am. Chem. Soc. 2007, 129, 8088–8089.
(19)Liu, B.; Wei, W.; Qu, X.; Yang, Z. Angew. Chem., Int. Ed. 2008, 47, 3973–3975.
(20)Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S. Adv. Mater. 2010, 22, 1060–1071.
(21)Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006–1009.
(22)Noble, P. F.; Cayre, O. J.; Alargova, R. G.; Velev, O. D.; Paunov, V. N. J. Am. Chem. Soc. 2004, 126, 8092–8093.
(23)Liu, G.; Liu, S.; Dong, X.; Yang, F.; Sun, D. J. Colloid Interface Sci. 2010, 345, 302–306.
(24)Wang, H. L.; Zhu, X. M.; Tsarkova, L.; Pich, A.; Möller, M. ACS Nano 2011, 5, 3937–3942.
(25)Bnks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622–8631.
(26)Simovic, S.; Prestidge, C. A. Langmuir 2003, 19, 3785–3792.
(27)Tarimala, S.; Dai, L. L. Langmuir 2004, 20, 3492–3494.
(28)Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158–2162.
(29)Horozov, T. S.; Binks, B. P. Angew. Chem., Int. Ed. 2006, 45, 773–776.
(30)Golemanov, K.; Tcholakova, S.; Kralchevsky, P. A.; Ananthapadmanabhan, K. P.; Lips, A. Langmuir 2006, 22, 4968–4977.
(31)Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J. Langmuir 2006, 22, 10983–10988.
(32)Tcholakova, S.; Denkov, N. D.; Lips, A. Phys. Chem. Chem. Phys. 2008, 10, 1608–1627.
(33)Kettlewell, S. L.; Schmid, A.; Fujii, S.; Dupin, D.; Armes, S. P. Langmuir 2007, 23, 11381–11386.
(34)Hunter, T. N.; Pugh, R. J.; Franks, G. V.; Jameson, G. J. Adv. Colloid Interface Sci. 2008, 137, 57–81.
(35)Akartuna, I.; Studart, A. R.; Tervoort, E.; Gauckler, L. J. Adv. Mater. 2008, 20, 4714–4718.
(36)Kaiser, A.; Liu, T.; Richtering, W.; Schmidt, A. M. Langmuir 2009, 25, 7335–7341.
(37)Tsuji, S.; Kawaguchi, H. Langmuir 2008, 24, 3300–3305.
(38)Sun, G. Q.; Li, Z. F.; Ngai, T. Angew. Chem., Int. Ed. 2010, 49, 2163–2166.
(39)He, X. D.; Ge, X. W.; Liu, H. R.; Deng, M. G.; Zhang, Z. C. J. Appl. Polym. Sci. 2007, 105, 1018–1024.
(40)Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Hoy, O.; Luzinov, I.; Minko, S. Adv. Funct.Mater. 2007, 17, 2307–2314.
(41)Li, J.; Stöver, H. D. H. Langmuir 2008, 24, 13237–13240.
(42)Tan, K. Y.; Gautrot, J. E.; Huck, W. T. S. Langmuir 2011, 27, 1251–1259.
(43)Haase, M. F.; Grigoriev, D.; Moehwald, H.; Tiersch, B.; Shchukin, D. G. J. Phys. Chem. C 2010, 114, 17304–17310.
(44)Yang, F.; Niu, Q.; Lan, Q.; Sun, D. J. J. Colloid Interface Sci. 2007, 306, 285–295.
(45)Liu, X.; Okada, M.; Maeda, H.; Fujii, S.; Furuzono, T. Acta Biomater. 2011, 2, 821–828.
(46)Cauvin, S.; Colver, P. J.; Bon, S. A. F. Macromolecules 2005, 38, 7887–7889.
(47)Voorn, D. J.; Ming, W.; van Herk, A. M. Macromolecules 2006, 39, 2137–2143.
(48)Bon, S. A. F.; Colver, P. J. Langmuir 2007, 23, 8316–8322.
(49)He, Y. Mater. Chem. Phys. 2005, 92, 134–137.
(50)He, Y.; Yu, X. Mater. Lett. 2007, 61, 2071–2074.
(51)Tiarks, F.; Landfester, K.; Antonietti, M. Langmuir 2001, 17, 5775–5780.
(52)Song, X.; Zhao, Y.; Wang, H.; Du, Q. Langmuir 2009, 25, 4443–4449.
(53)Kim, S. H.; Yi, G. R.; Kim, K .H.; Yang, S. M. Langmuir 2008, 24, 2365–2371.
(54)Chen, T.; Colver, P. J.; Bon, S. A. F. Adv. Mater. 2007, 19, 2286–2289.
(55)Chen, J. H.; Cheng, C. Y.; Chiu, W. Y.; Lee, C. F.; Liang, N. Y. Eur. Polym. J. 2008, 44, 3271–3279.
(56)Gao, Q. X.; Wang, C. Y.; Liu, H. X. ;Wang, C. H.; Liu, X. X.; Tong, Z. Polymer 2009, 50, 2587–2594.
(57)Yin, D. Z.; Zhang, Q. Y.; Zhang, H. P.; Yin, C. J. J. Polym. Res. 2010, 17, 689–696.
(58)Jeng, J.; Chen, T. Y.; Lee, C. F.; Liang, N. Y.; Chiu, W. Y. Polymer 2008, 49, 3265–3271.
(59)Chou, I. C.; Lee, C. F.; Chiu, W. Y. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3524–3535.
(60)Gill, M.; Mykytiuk, J.; Armes, S. P.; Edwards, J. L.; Yeates, T.; Moreland, P. J. Mollett, C. J. Chem. Soc., Chem. Commun. 1992, 108.
(61)Bourgeat-Lami, E.; Lang, J. J. Colloid Interface Sci. 1998, 197, 293–308.
(62)Chen, M.; Zhou, S.; You, B.; Wu, L. Macromolecules 2005, 38, 6411–6417.
(63)Schmid, A.; Fujii, S.; Armes, S. P.; Leite, C. A. P.; Galembeck, F.; Minami, H.; Saito, N.; Okubo, M. Chem. Mater. 2007, 19, 2435–2445.
(64)Colver, P. J.; Colard, C. A. L.; Bon, S. A. F. J. Am. Chem. Soc. 2008, 130, 16850–16851.
(65)Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyjaszewski, K.; Tilton, R.D.; Lowry, G. V. Nano Lett. 2005, 5, 2489–2494.
(66)Zhao, Y.; Wang, H.; Song, X.; Du, Q. Macromol. Chem. Phys. 2010, 211, 2517–2529.
(67)Whitesides, T. H.; Ross, D, S. J. Colloid Interface Sci. 1995, 169, 48–59.
(68)Arditty, S.; Whitby, C.; Schmitt, V.; Binks, B. P.; Leal-Calderon, F. Eur. Phys. J. E 2003, 11, 273–281.
(69)Chern, C. S.; Chen, T. J.; Liou, Y. C. Polymer 1998, 39, 3767–3777.
(70)Marinova, K. G.; Alargova, R. G.; Denkov, N. D.; Velev, O. D;Petsev, D. N.; Ivanov, I. B.; Borwankar, R. P. Langmuir 1996, 12, 2045–2051.
(71)Schechter, R. S. ; Graciaa, A. ; Lachaise, J. J. Colloid Interface Sci. 1998, 204, 398–309.
(72) Beattie, J. K.; Djerdjev, A. M. Angew. Chem., Int. Ed. 2004, 43, 3568–3571.
(73) Creus, P.; Lachaise, J.; Garciaa, A.; Beattie, J. K.; Djerdjev, A. M. J. Phys. Chem. B 2009, 113, 14146–14150.
(74) Vacha, R.; Rick, S. W.; Jungwirth, P.; de Beer, A. G. F.; de Aguiar, H. B.; Samson, J-S.; Roke, S. J. Am. Chem. Soc. 2011, 133, 10204–10210.
(75) Zimmermann, R.; Freudenberg, U.; Schweib, R.; Kuttner, D.; Werner, C. Curr. Opin. Colloid Interface Sci. 2010, 15, 196–202.
(76) Zangi, R.; Engberts, J. B. F. N. J. Am. Chem. Soc. 2005, 127, 2272–2276.
(77) Kudin, K. N.; Car, R. J. Am. Chem. Soc. 2008, 130, 3915–3919.
(78) Vacha, R.; Horinek, D.; Berkowitz, M. L.; Jungwirth, P. Phys. Chem. Chem. Phys. 2008, 10, 4975–4980.
(79) Weissenborn, P. K.; Pugh, R. J. J. Colloid Interface Sci. 1996, 184, 550–563.
(80) Petersen, M. K.; Iyengar, S. S.; Day, T. J. F.; Voth, G. A. J. Phys. Chem. B 2004, 108, 14804–14806.
(81) Iyengar, S. S.; Day, T. J. F.; Voth, G. A. Int. J. Mass Spectrom. 2005, 241, 197–204.
(82) Petersen, P. B.; Saykally, R. J. J. Phys. Chem. B 2005, 109, 7976–7980.
(83) Petersen, P. B.; Saykally, R. J. Chem. Phys. Lett. 2008, 458, 255–261.
(84) Tarbuck, T. L.; Ota, S. T.; Richmond, G. L. J. Am. Chem. Soc. 2006, 128, 14519–14527.
(85) Winter, B.; Faubel, M.; Vacha, R.; Jungwirth, P. Chem. Phys. Lett. 2009, 474, 241–247.
(86) Buch, V.; Milet, A.; Vacha, R.; Jungwirth, P.; Devlin, J. P. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7342–7347.
(87) Wick, C. D.; Kuo, I. F. W.; Mundy, C. J.; Dang, L. X. J. Chem. Theory Comput. 2007, 3, 2002–2010.
(88) Mundy, C. J.; Kuo, I. F. W.; Tuckerman, M. E.; Lee, H. S.; Tobias, D. J. Chem. Phys. Lett. 2009, 481, 2–8.
(89) Hunter, R. J. In Zeta Potential in Colloid Science; Ottewill, R. H., Rowell, R. L., Eds.; Academic Press: New York, 1981.
(90) Delgado, A. V.; Gonz_alez-Caballero, F.; Hunter, R. J.; Koopal, L. K.; Lyklema, J. Pure Appl. Chem. 2005, 77, 1753–1805.
(91) Kabalnov, A. S.; Shchukin, E. D. Advances in Colloid and Interface Science 1992, 38, 69-97.
(92) Kamogawa, K.; Matsumoto, M.; Kobayashi, T.; Sakai, T.; Sakai, H.; Abe, M. Langmuir 1999, 15, 1913–1917.
(93) Kamogawa, K.; Akatsuka, H.; Matsumoto, M.; Yokoyama, S.; Sakai, T.; Sakai, H.; Abe, M. Colloids Surf., A. 2001, 180, 41–53.
(94) Sakai, T.; Kamogawa, K.; Harusawa, F.; Momozawa, N.; Sakai, H.; Abe, M. Langmuir 2001, 17, 255–259.
(95) Sakai, T.; Kamogawa, K.; Kwon, K. O.; Sakai, H.; Abe, M. Colloid Polym. Sci. 2002, 280, 99–106.
(95) Sakai, T.; Kamogawa, K.; Nishiyama, K.; Sakai, H.; Abe, M. Langmuir 2002, 18, 1985–1990.
(96) Kamogawa, K.; Kuwayama, N.; Katagiri, T.; Akatsuka, H.; Sakai, T.; Sakai, H.; Abe, M. Langmuir 2003, 19, 4063–4069.
(97) Sakai, T.; Takeda, Y.; Mafune, F.; Abe, M.; Kondow, T. J. Phys. Chem. B 2002, 106, 5017–5021.
(98) Sakai, T.; Takeda, Y.; Mafune, F.; Abe, M.; Kondow, T. J. Phys. Chem. B 2003, 107, 2921–2926.
(99) Sakai, T. Curr. Opin. Colloid Interface Sci. 2008, 13, 228–235.
(100) Evans, D. F.; Wennersrrom, H. 1999 The colloidal domain, 2nd edn.Wiley- VCH, New York.
(101) McClements, D. J. 1998 Food emulsions: practice and techniques. CRC, Boca Raton.
(102) Hunter, R. J. 1986 Foundations of colloid Science, vol 1. Oxford University Press, Oxford.
(103) Davis, S. S.; Smith, A. 1976 In: Smith AL(ed) Theory and practice of emulsion technology. Academic, London, pp 325–349.
(104) Binks BP 1998 Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge, pp 1–55.
(105) Taylor, P. AdV. Colloid Interface Sci. 1998, 75, 107.
(106) Tauer, K.; Mukhamedjanova, M.; Holtze, C.; Nazaran, P.; Lee, J. Macromol. Symp. 2007, 248, 227-238.
(107) Kuehn, I.; Tauer, K. Macromolecules 1995, 28, 8122-8128.
(108) Tauer, K.; Padtberg, K.; Dessy, C. ACS Symp. Ser. 2002, 801, 93.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 環境敏感型共聚高分子之合成與性質研究 :(I)RAFT法合成溫度/酸鹼雙重應答之三嵌段高分子 (II)磺胺類酸鹼敏感型水膠之合成
2. 環境敏感型磁性奈米顆粒之研製與藥物釋放性質研究I.以無乳化劑乳化聚合法合成中空磁性奈米顆粒II.以活性聚合法合成自組裝奈米顆粒
3. 新型發光二極體封裝材料之開發:無機顆粒/矽樹脂複合材料之製備
4. 迷你乳化聚合製備奈米複合乳膠顆粒PS/Fe3O4,P(AA-SA)/ZnO及PMMA-b-PBA—成核機制,形態控制及動力分析
5. 利用分散聚合法與無電電鍍法製備聚苯乙烯/銀核殼型導電複合顆粒及其性質與應用研究
6. 芯鞘型溫感性導電複合纖維之製備與其形態性質分析
7. 環境敏感型高分子奈米材料製備(PNIPAAm/chitosan)及其於藥物釋放與金屬離子吸附之應用
8. 以水性聚胺酯為基底引入壓克力多元醇及二氧化矽合成可熱交聯之抗腐蝕塗料
9. 具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料之製備,靜電紡纖維,性質與形態分析
10. 高折射率奈米二氧化鋯/矽樹脂複合材料之製備及其在LED封裝材料的應用
11. 導電高分子型態控制
12. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
13. 矽烷改質奈米二氧化鋯/矽樹脂複合材料之製備及其應用於LED封裝材料之評估
14. 以異質吸引法製備高分子/碳黑複合顆粒及其性質與應用研究
15. 藉由乳化聚合法製備和調控高分子微球