(3.239.56.184) 您好!臺灣時間:2021/05/13 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾學毅
研究生(外文):Hsueh-Yi Tseng
論文名稱:碳塗佈於矽複合材料的製備與其應用於鋰離子電池負極之研究
論文名稱(外文):The Study of Preparation for Carbon-coated Silicon Composites as Anode Materials of Li-ion Batteries
指導教授:顏溪成顏溪成引用關係
口試委員:周偉龍蔡子萱高振宏
口試日期:2013-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:鋰離子電池負極材料碳矽複合材料
外文關鍵詞:Lithium-ion batterySiliconNegative electrodeC/Si composite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:568
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的是研究以矽為主體的鋰離子二次電池負極材料。矽的高電容量(~4200mAh/g)是取代目前常用的石墨(372 mAh/g)負極材料的一大優勢。但矽在充放電的過程中會伴隨著劇烈的體積變化(400%)與本身的低導電度,使得其在鋰離子電池中的應用性受到了侷限。為了解決上述所存在的問題,在本研究中試圖解決其體積變化的問題,將碳披覆在矽表面上,以及找出組電池的最適當比例及製作條件。
首先本實驗以檸檬酸為前驅物,在氮氣氣氛下經由熱處理將其裂解成不定型碳,而附著在矽表面上及電極上。在矽的使用上,進行前處理和縮小粒徑可有效改善循環次數。而在組裝成電池時,導電添加劑可有效增加電池表現,幫助鋰離子擴散到矽上且遷入形成合金。以本實驗的製程,取檸檬酸和奈米級矽重量比5:1的條件下,以無水酒精作為溶劑分散後,在600oC下在管狀高溫爐,以氮氣氣氛下進行6小時的燒結,做出碳矽複合材料後塗在銅箔上,再以活性材料:導電添加劑:黏著劑=45:45:10(或60:30:10)的條件下,製備鋰離子電池的負極可得到較佳的電池性能表現。


The main purpose of this research is to explore new negative electrode materials based on silicon for lithium-ion battery. The high theoretical capacity of silicon (~4200 mAh/g) is superior to that of graphite (372 mAh/g) as anode materials. However, Si has the disadvantage of dramatic volumetric variation during cycling and its low conductivity. Carbon-coated Si composite materials are prepared in this study to overcome the problems just mentioned. In this study the negative electrode materials prepared from various conditions was investigated by discharge/charge cycles of the coin cells containing Si electrodes and Li foil.
Carbon-coated Si materials have been prepared by the thermal treatment of solution of Si particles and citric acid dissolved in the 99.5% alcohol into the quartz tube in nitrogen atmosphere. The thermal treatment of calcination at high temperature was to form the amorphous carbon layer onto the surface of Si particles. The experimental results show that the nano-scale silicon particles has better cycle performance after dilute HF pretreatment. Also the calcination process at 600oC for 6 hours would significantly improve cycle performance. Besides, the addition of KS-6(conductive additives)in the coin cell tests would also enhance the capacity and cycle performance.


摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………II
目錄…………………………………………………………………………………III
表目錄…………………………………………………………………………………V
圖目錄………………………………………………………………………………VIII
第一章 緒論 1
1.1 以鋰作為電池材料的發展概述 1
1.2 研究動機和架構 4
第二章 文獻回顧 5
2.1鋰離子電池的介紹 5
2.2以碳作為鋰離子電池負極材料 7
2.3以矽作為鋰離子電池負極材料 13
2.4以碳矽複合材料作為鋰離子電池負極材料 16
2.5鈕扣電池 23
第三章 實驗方法 34
3.1實驗儀器設備 34
3.2實驗藥品及器材 35
3.3材料合成方法 36
3.4材料分析 43
第四章 結果與討論 46
4.1粒徑大小對於電池表現的影響 46
4.2鈕扣型電池成分最佳化參數 62
4.3碳包覆矽的製備:燒結碳前驅物比例的效應 72
4.4碳包覆矽的製備:燒結溫度的效應 78
4.5碳包覆矽的製備:燒結時間的效應 88
第五章 結論 93
第六章 參考文獻 94


1.維基百科編者. 鋰離子電池. Available from: http://zh.wikipedia.org/w/index.php?title=%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0&oldid=27941088.
2.Armand, M. and P. Touzain, Graphite Intercalation Compounds as Cathode Materials. Materials Science and Engineering, 1977. 31: p. 319-329.
3.Murphy, D.W. and J. Broadhead, Materials for advanced batteries. Related Information: NATO Conference Series, Series VI: Materials Science. Volume 2. 1980. Medium: X; Size: Pages: 381.
4.林群耀, 鋰電池巨觀與微觀雙尺度數學模擬, in 臺灣大學化學工程學研究所學位論文2010, 臺灣大學. p. 1-142.
5.Abraham, K.M., D.M. Pasquariello, and D.A. Schwartz, Practical Rechargeable Lithium Batteries. Journal of Power Sources, 1989. 26(1-2): p. 247-255.
6.Brandt, K. and F.C. Laman, Reproducibility and Reliability of Rechargeable Lithium Molybdenum-Disulfide Batteries. Journal of Power Sources, 1989. 25(4): p. 265-276.
7.Dan, P., et al., Performances and Safety Behavior of Rechargeable AA-Size Li/LixMno2 Cell(R). Journal of Power Sources, 1995. 54(1): p. 143-145.
8.Mengeritsky, E., et al., Safety and performance of Tadiran TLR-7103 rechargeable batteries. Journal of the Electrochemical Society, 1996. 143(7): p. 2110-2116.
9.Broussely, M., J.P. Rivault, and J.P. Gabano, Li-Agbi(Cro4)2 - a New Highly Reliable Lithium Battery for Long Service Life Applications. Journal of Power Sources, 1983. 9(3-4): p. 339-344.
10.Winter, M., et al., Insertion electrode materials for rechargeable lithium batteries. Advanced Materials, 1998. 10(10): p. 725-763.
11.Passerini, S., et al., Thin Metal-Oxide Films on Transparent Substrates for Li-Insertion Devices. Journal of Applied Electrochemistry, 1993. 23(11): p. 1187-1195.
12.維基百科編者. 石墨. Available from: http://zh.wikipedia.org/w/index.php?title=%E7%9F%B3%E5%A2%A8&oldid=25398600.
13.Bernal, J.D., The structure of graphite. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1924. 106(740): p. 749-773.
14.林佑彥, 由花生殼製備鋰離子電池高電容量負極碳材料; High-capacity carbons derived from peanut shells as anode materials for lithium ion batteries. 2003.
15.Franklin, R.E., Crystallite Growth in Graphitizing and Non-Graphitizing Carbons. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1951. 209(1097): p. 196-&.
16.Mabuchi, A., et al., Charge-Discharge Characteristics of the Mesocarbon Microbeads Heat-Treated at Different Temperatures. Journal of the Electrochemical Society, 1995. 142(4): p. 1041-1046.
17.Wu, Y.P., et al., Mechanism of lithium storage in low temperature carbon. Carbon, 1999. 37(12): p. 1901-1908.
18.Dahn, J.R., W. Xing, and Y. Gao, The ''falling cards model'' for the structure of microporous carbons. Carbon, 1997. 35(6): p. 825-830.
19.Buiel, E., A.E. George, and J.R. Dahn, On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature. Journal of the Electrochemical Society, 1998. 145(7): p. 2252-2257.
20.Fujimoto, H., et al., Effect of Crystallite Size on the Chemical-Compositions of the Stage-1 Alkali Metal-Graphite Intercalation Compounds. Carbon, 1994. 32(2): p. 193-198.
21.Tatsumi, K., et al., The Influence of the Graphite Structure on the Electrochemical Characteristics for the Anode of Secondary Lithium Batteries (Vol 142, Pg 716, 1995). Journal of the Electrochemical Society, 1995. 142(10): p. C100-C100.
22.Endo, M., et al., Lithium Secondary Battery Based on Intercalation in Carbon-Fibers as Negative Electrode. Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 1994. 244: p. A171-A176.
23.Lampe-Onnerud, C., et al., Benchmark study on high performing carbon anode materials. Journal of Power Sources, 2001. 97-8: p. 133-136.
24.Wen, C.J. and R.A. Huggins, Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System. Journal of Solid State Chemistry, 1981. 37(3): p. 271-278.
25.Massalski, T.B. and H. Okamoto, Binary alloy phase diagrams. 1990, Materials Park, Ohio: ASM International.
26.Christodoulou, C.N., E.B. Boltich, and T.B. Massalski, On Spin Reorientation Phenomena - Metastability. Journal of Magnetism and Magnetic Materials, 1990. 84(1-2): p. 29-38.
27.Ohara, S., et al., A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. Journal of Power Sources, 2004. 136(2): p. 303-306.
28.Winter, M., P. Novak, and A. Monnier, Graphites for lithium-ion cells: The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area. Journal of the Electrochemical Society, 1998. 145(2): p. 428-436.
29.Boukamp, B.A., G.C. Lesh, and R.A. Huggins, All-Solid Lithium Electrodes with Mixed-Conductor Matrix. Journal of the Electrochemical Society, 1981. 128(4): p. 725-729.
30.Zhang, W.J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(3): p. 877-885.
31.Wilson, A.M., et al., Lithium Insertion in Pyrolyzed Siloxane Polymers. Solid State Ionics, 1994. 74(3-4): p. 249-254.
32.Wilson, A.M., et al., Nanodispersed Silicon in Pregraphitic Carbons. Journal of Applied Physics, 1995. 77(6): p. 2363-2369.
33.Holzapfel, M., et al., A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chemical Communications, 2005(12): p. 1566-1568.
34.Holzapfel, M., et al., Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochemical and Solid State Letters, 2005. 8(10): p. A516-A520.
35.Xie, J., G.S. Cao, and X.B. Zhao, Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. Materials Chemistry and Physics, 2004. 88(2-3): p. 295-299.
36.Ng, S.H., et al., Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie-International Edition, 2006. 45(41): p. 6896-6899.
37.Ng, S.H., et al., Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. Journal of Physical Chemistry C, 2007. 111(29): p. 11131-11138.
38.Andersson, A., Surface Phenomena in Li-Ion Batteries. 2001: Fyris-Tryck.
39.Nagayama, K., et al., The reaction of lithium-manganese oxides for the cathode materials of rechargeable lithium batteries with nonaqueous electrolyte. Electrochemistry, 2001. 69(1): p. 6-9.
40.Gachot, G., et al., Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochimica Acta, 2012. 83: p. 402-409.
41.劉偉仁, 鋰離子電池矽負極材料之製備與特性分析, in 臺灣大學化學工程學研究所學位論文2006, 臺灣大學. p. 1-209.
42.Cu, P., et al., Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis. Electrochimica Acta, 2010. 55(12): p. 3876-3883.
43.Fan, J. and P.S. Fedkiw, Electrochemical impedance spectra of full cells: Relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes. Journal of Power Sources, 1998. 72(2): p. 165-173.
44.Zuo, P.J., et al., Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries. Ionics, 2011. 17(1): p. 87-90.
45.Dimov, N., S. Kugino, and M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta, 2003. 48(11): p. 1579-1587.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔