跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許展嘉
研究生(外文):Chan-Chia Hsu
論文名稱:耦合系統與高分子系統相平衡預測
論文名稱(外文):Prediction of Phase Equilibria of Associating and Polymeric Systems
指導教授:林祥泰
指導教授(外文):Shiang-Tai Lin
口試委員:陳延平諶玉真汪上曉李明哲
口試委員(外文):Yan-Ping ChenYu-Jane ShengDavid Shan-Hill WongMing-Jer Lee
口試日期:2013-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:182
中文關鍵詞:COSMO-SAC模型配位數高分子混合物局部流體結構PR+COSMOSAC 氣體狀態方程式reactive COSMO-SAC 模型
外文關鍵詞:COSMO-SAC modellocal compositionVLE of polymer mixturesspecific fluid structuresPR+COSMOSAC EOSreactive COSMO-SAC model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究致力於改進複雜系統相行為的熱力學模型預測。眾多液體模型中,COSMO-SAC液體模型從量子化學的計算取得有關分子的資料,因此可以成功的在沒有任何實驗數據迴歸下預測液體的非理想熱力學性質。於是,本研究的目標是提升該模型對大型分子(如高分子)及強作用力流體(如含氫鍵分子的流體甚至產生化學反應)的相行為表現。首先,從配位數的角度可以更詳細的了解液體模型的基本原理。本研究提出一個推導液體模型的標準作法,此作法可以保證推導得出的液體模型的配位數必定滿足兩個重要的物理原則:(1)任何濃度及溫度下,任何液體裡的任意分子旁邊接觸到的總分子數必須維持定值; ( 2 ) 任意兩種分子在液體中的配對數目必須守恆,換言之,從A分子旁邊找到的接觸到的B分子總數必須和B分子旁邊找到的接觸到的A分子總數相等。本研究據此推導出之COSMO-SAC模型之配位數同時滿足此二重要物理原則,於是,配位數能夠定性上幫助對該模型局部流體結構的理解,進而改進該模型對複雜流體的相行為預測。
針對COSMO-SAC模型在大型如高分子的相行為預測,首先必須減少大型分子量子化學計算的計算時間。本研究開發一個有效率的新方法,使用只有三個單體的高分子(tri-mer)量子化學屏蔽電荷計算結果來預測具有任何聚合度的同種高分子相行為。在21種不同的高分子與35種不同溶劑並跨越從274.15K到477.15K溫度範圍的汽液二元相平衡測試中,此新方法和實驗取得的溶劑活度對數總誤差(log deviation)約為0.08,然而,高分子溶液中COSMO-SAC模型的配位數計算顯示出高分子的構型會顯著的被溶劑的極性影響。
含有複雜作用力如包含氫鍵的分子在系統中常常會產生複雜的雙分子聚合或甚至多分子聚合結構,因此使得相平衡難以得到準確的預測。本研究指出,透過反應平衡直接的考慮這些分子間的聚合體[如乙酸的雙分子聚合體(cyclic dimmer)及鏈狀碎片(chain fragment)],可進而改進預測模型如PR+COSMOSAC氣體狀態方程式的局部流體結構,大幅改進乙酸混合物中因為氫鍵發生強烈耦合行為的相行為預測。在本研究中,測試了15種不同含有乙酸的混合系統相平衡並與實驗值(共388 實驗點,溫度範圍跨越293.15 到 373.2K)比較,在平衡壓力的誤差約為7.10% (AARD-P%),而在平衡濃度方面只有2.38% (AAD-y%),此準確度已經非常接近使用大量參數回歸的mod-UNIFAC+HOC equation of state (Hayden-O’Connell 氣體狀態方程式)模型的預測結果(5.14% 和 1.85%.)。
透過化學反應改進耦合系統的局部流體結構,使得COSMO-SAC模型在強作用力的複雜系統取得顯著的進步,本研究更進一步開發針對有機酸系統預測的Reactive COSMO-SAC模型。在該模型中,原本的模型的氫鍵表面可以經過化學反應在不同電性的表面之間形成化學鍵結,這樣的表面鍵結亦可改進耦合系統的局部流體結構,此新模型在與前述相同的乙酸測試系統中取得5.33% (AARD-P%)以及4.32% (AAD-y%)的平衡壓力以及平衡濃度的誤差。不同於前述模型,此新模型同時不需要任何來自實驗的耦合係數,在所有的有機酸測試系統中(25種不同有機酸混合流體共859個實驗點跨越293.15K到502.9K的溫度範圍),取得14.74%(AARD-P%)以及6.06%(AAD-y%)的平衡壓力、平衡濃度誤差的準確預測結果,此結果相較於原本的COSMO-SAC模型(18.12% and 7.07%)有大幅度的進步。除此之外,新開發的Reactive COSMO-SAC模型在液液相平衡取得準確的預測結果。在5種含乙酸雙組成液液平衡的測試系統中(51個實驗點,溫度範圍跨越289.15K到337K),從原本的COSMO-SAC模型的49%(AAD-x%)平衡濃度誤差,大幅度改進至7.3%。

Efforts are made to improve the prediction capability for the phase behaviors of complex systems, such as polymers and associating fluids. The COSMO-SAC model, based on quantum mechanical calculation of molecular information, is a powerful model to predict the liquid phase nonidealities without any experimental data. Our goal is to improve the method for systems with increasing conformation complexity (from small molecules to polymers) and/or increasing interaction complexity (hydrogen-bonding and reactive systems).
A general approach for developing liquid activity coefficient models is proposed that ensures at least two important physical conditions: (1) the total number of neighboring molecules around one molecule of species A must be a constant at any temperature for all possible mixture compositions, and (2) the number of pairs between any two species A-B determined from the local composition of B around A must be the same the that of A around B. Our results show that while most existing liquid models satisfy condition (1), only COSMO-SAC model satisfies both two conditions. Furthermore, the local composition of COSMO-SAC model is derived. The local compositions provide a means of qualitative analysis and understanding the local fluid structure.
For the large molecules with increasing conformation complexity, a new method is developed here to efficiently determine the screening charge distribution of polymers for use in the COSMO-SAC model. The vapor-liquid equilibrium of 21 different polymers with 35 different solvents is tested by COSMO-SAC without any further modification in this work. The overall average error of solvent activity is 0.08 with temperature range from 274.15K to 477.15K. The local composition of the polymer systems suggests the conformation of polymers indeed depends on the polarity of the solvents.
For systems with increasing interaction complexity (e.g. hydrogen bonds), specific fluid structures, such as the dimers and/or hydrogen bonding network, may occur and affect the phase behavior. By explicit inclusion of the specific local fluid structures, the phase behaviors of fluid containing acetic acid can be accurately predicted via the PR+COMOSAC equation of state (EOS). The prediction accuracy in describing the vapor-liquid equilibrium of 15 binary mixtures (388 data points, temperature range from 293.15 to 373.2) is 7.10% (AARD-P%) in pressure and 2.38% (AAD-y%) in vapor composition, which is similar to those from the mod-UNIFAC+HOC (Hayden-O’Connell EOS) 5.14% and 1.85%. The root-mean square error in predicting liquid composition in liquid-liquid equilibrium of 5 binary systems (51 data points, temperature range from 289.15K to 337K) is found to be 0.096, which is more accurate than that from mod-UNIFAC, 0.173.
The finding of specific local fluid structures leads to the development of a reactive COSMO-SAC model for strongly associating fluids. In this model, hydrogen-bonding surfaces are allowed to react with each other and form chemical bonds. The advantage is that no experimental association constant is needed. The prediction accuracy in describing the vapor-liquid equilibrium of 15 binary mixtures (the same as the last paragraph) is 5.33% (AARD-P%) in pressure and 4.32% (AAD-y%) in vapor composition, which is similar to PR+COSMOSAC equation of state with explicit consideration of cyclic-dimmer and chain-fragment. For total 25 binary mixtures (859 data points, temperature range from 293.15 to 502.9) is 14.74% (AARD-P%) in pressure and 6.06% (AAD-y%) in vapor composition, which is significantly reduced from COSMO-SAC model 18.12% and 7.07%. The root-mean square error in predicting liquid composition in liquid-liquid equilibrium of 5 binary systems (51 data points, temperature range from 289.15K to 337K) is found to be 0.073, which is also more accurate than that from original COSMOSAC model (0.439) and PR+COSMOSAC equation of state (0.096).

國立臺灣大學博士學位論文 口試委員會審定書 I
Acknowledgement II
中文摘要 III
Abstract V
Table of Content VIII
Index of Tables XII
Index of Figures XIII
Chapter 1. Overview 1
Chapter 2. Local Composition of Incompressible Liquids 10
2.1 Introduction 10
2.2. The Fundamentals of a Proper Local Composition Model 16
2.3. New Activity Coefficient Models 23
2.3.1 Analytical Gex Models 23
2.3.1.1 fij is a Ratio of Two Functions gij and τij 24
2.3.1.2 fij is a Product of fi and fj 26
2.3.2 Non-analytical Models 30
2.4. Local Composition of COSMO-SAC Model 32
2.4.1 The Activity Coefficient from COSMO-SAC Model 32
2.4.2 Local Composition of COSMO-SAC Model 36
2.4.3 An Illustration of Local Composition from COSMO-SAC Model 41
2.5. Summary and Remarks 50
Appendix 2.A. Solution of fi in section 3.1.2 for a binary mixtureor a binary mixture, Eq. 2-32 gives the following two relations 51
Appendix 2.B. Proof of equality used in Eq. 2-35 53
Chapter 3. Prediction of Vapor-Liquid Equilibrium of Polymer Solvent Mixtures from the COSMO-SAC Activity Coefficient Model 54
3.1 Introduction 54
3.2 Theoretical Basis 57
3.3 Computational Detail 61
3.4 Results and Discussion 63
3.4.1 VLE of Polymer Solutions 63
3.4.2 Tacticities of Polymers 79
3.4.3 Local Composition Analysis of Polymer Solutions 84
3.5 Summary and Remarks 87
APPENDIX 3.A: Abbreviation of polymers considered in this work 88
Chapter 4. Prediction of the Phase Behavior of Acetic Acid Containing Fluids with Explicit Consideration of Local Fluid Structures 89
4.1 Introduction 89
4.2 Theory 93
4.3 Computational Details 97
4.4 Results and Discussion 100
4.4.1 Properties of Pure Acetic Acid 100
4.4.2 VLE of Acetic Acid and Other Organic Compound 107
4.4.3 LLE of Acetic Acid and Alkane 116
4.4.4 Local Composition Analysis of Pure Acetic-Acid 119
4.5 Summary and Remarks 121
Appendix 4.A Chemical Equilibrium Calculation 122
Appendix 4.B Modified Bubble Point Calculation 124
Appendix 4.C Solvation Calculation 125
Chapter 5. Phase Behavior Prediction of Acid Associating Systems from COSMO-SAC Model with Reactive Segments 130
5.1 Introduction 130
5.2 Theory 132
5.2.1 Phase Equilibria Calculation 132
5.2.2 COSMO-SAC Model 132
5.2.3 The Reactive Segment Model 133
5.2.4 Evaluation of Segment Activity Coefficient in Reactive COSMO-SAC Model 136
5.2.5 Equilibrium Constant for Segment Reactions 138
5.2.6 Calculation of Local Compositions from the reactive COSMO-SAC Model 139
5.4 Results and Discussions 145
5.4.1 Equilibrium Segment Reaction Calculation for Pure Acetic-acid 145
5.4.2 VLE calculation of mixtures containing acetic-acid 148
5.4.3 LLE calculation of mixtures containing acetic-acid 157
5.4.4 Local Composition Analysis of Reactive COSMO-SAC Model 161
5.5 Summary and Remarks 164
Appendix 5.A 165
Chapter 6. Conclusions and Future Work 167
Reference 172

www.ddbst.de. (2008). Dortmund Data Bank and DDB Software Package. from DDBST GmbH
Abbott, M. M., & Prausnitz, J. M. (1987). Generalized van der Waals Theory - A Classical Perspective. Fluid Phase Equilibria, 37, 29-62.
Abrams, D. S., & Prausnitz, J. M. (1975). Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems. Aiche Journal, 21(1), 116-128. doi: 10.1002/aic.690210115
Akiyama, Y., Wakisaka, A., Mizukami, F., & Sakaguchi, K. (1998). Solvent Effect on Acid-Base Clustering Between Acetic Acid and Pyridine. Journal of the Chemical Society-Perkin Transactions 2(1), 95-99. doi: 10.1039/a704540i
Almennin.A, Bastians.O, & Motzfeld.T. (1969). A Reinvestigation of Structure of Monomer and Dimer Formic Acid by Gas Electron Diffraction Technique Acta Chemica Scandinavica, 23(8), 2848-&. doi: 10.3891/acta.chem.scand.23-2848
Anderson, T. F., & Prausnitz, J. M. (1980). Computational Methods for High-Pressure Phase-Equilibria and Other Fluid-Phase Properties Using A Partition-Function .1. Pure Fluids. Industrial & Engineering Chemistry Process Design and Development, 19(1), 1-8. doi: 10.1021/i260073a001
Backes, G. (2006). BioPerspectives in Focus: Nutrition for the Future - DECHEMA Conference on 26th April 2006 in Potsdam. Ernahrungs-Umschau, 53(6), 244-246.
Bae, Y. C., Shim, J. J., Soane, D. S., & Prausnitz, J. M. (1993). Representation of Vapor Liquid and Liquid Liquid Equilibria for Binary-Systems Containing Polymers - Applicability of an Extended Flory Huggins Equation. Journal of Applied Polymer Science, 47(7), 1193-1206. doi: 10.1002/app.1993.070470707
Baniasadi, M., & Ghader, S. (2011). Description of Polymer Solutions Phase Equilibria by Cubic Equation of State with Different Mixing Rules. Journal of Engineering Thermophysics, 20(1), 115-127. doi: 10.1134/s1810232811010103
Barton, J. R., & Hsu, C. C. (1969). P-V-T-X Properties of Associated Vapors of Formic and Acetic Acids. Journal of Chemical and Engineering Data, 14(2), 184-&. doi: 10.1021/je60041a013
Bawn, C. E. H., Freeman, R. F. J., & Kamaliddin, A. R. (1950). High Polymerr Solutions Part 1.- Vapour Pressure of Polystyrene Solutions. Transactions of the Faraday Society, 46(8), 677-684. doi: 10.1039/tf9504600677
Bawn, C. E. H., & Wajid, M. A. (1956). High Polymer Solutiona Part 7.- Vapour Pressure of Polystyrene Solutions in Acetone, Chloroform and Propyl Acetate. Transactions of the Faraday Society, 52(12), 1658-1664. doi: 10.1039/tf9565201658
Becke, A. D. (1993). Density-Functional Thermochemistry .3. the Role of Exact Exchange. Journal of Chemical Physics, 98(7), 5648-5652. doi: 10.1063/1.464913
Bertie, J. E., Eysel, H. H., Permann, D. N. S., & Kalantar, D. H. (1985). Correction of the Low-Frequency Raman-Spectra of Gaseous Formic and Acetic-Acids to PDS Spectra. Journal of Raman Spectroscopy, 16(2), 137-138. doi: 10.1002/jrs.1250160209
Bertie, J. E., & Michaelian, K. H. (1982). The Raman-Spectrum of Gaseous Aceetic-Acid at 21-Degrees-C. Journal of Chemical Physics, 77(11), 5267-5271. doi: 10.1063/1.443795
Bertucco, A., & Mio, C. (1996). Prediction of Vapor-Liquid Equlibrium for Polymer Solutions by a Group-Contribution Redlich-Kwong-Soave Equation of State. Fluid Phase Equilibria, 117(1-2), 18-25. doi: 10.1016/0378-3812(95)02931-1
Bich, E., Neumann, A. K., & Vogel, N. E. (1996). Dimerization in Acetic Acid Vapor and Evaluation of PPT Measurements with an Equation of State for a Reactive Fluid. Fluid Phase Equilibria, 125(1-2), 67-78. doi: 10.1016/s0378-3812(96)03081-6
Bogdanic, G., & Fredenslund, A. (1994). Revision of the Group-Contribution Flory Equation of State for Phase-Equilibria Calculations in Mixtures with Polymers .1. Prediction of Vapor-Liquid-Equilibria for Polymer-Solutions. Industrial & Engineering Chemistry Research, 33(5), 1331-1340. doi: 10.1021/ie00029a032
Booth, C., & Devoy, C. J. (1971). Thermodynamics of Mixtures off Poly(Ethylene Oxide) and Benzene. Polymer, 12(5), 309-319. doi: 10.1016/0032-3861(71)90053-x
Briggs, J. M., Nguyen, T. B., & Jorgensen, W. L. (1991). Monte-Carlo Simulations of Liquid Acetic-Acid and Methyl Acetate with the Opls Potential Functions. Journal of Physical Chemistry, 95(8), 3315-3322. doi: 10.1021/j100161a065
Brooker, M. H., Nielsen, O. F., & Praestgaard, E. (1988). Assessment of Correction Procedures for Reduction of Raman-Spectra. Journal of Raman Spectroscopy, 19(2), 71-78. doi: 10.1002/jrs.1250190202. Cerius2, Dmol3, version 4.0. (1999.). San Diego, CA Molecular Simulations Inc.
Chen, F., Fredenslund, A., & Rasmussen, P. (1990). Group-Contribution Flory Equation of State for Vapor-Liquid Equilibria in Mixtures with Polymers. Industrial & Engineering Chemistry Research, 29(5), 875-882. doi: 10.1021/ie00101a024
Chocholousova, J., Vacek, J., & Hobza, P. (2003). Acetic Acid Dimer in the Gas Phase, Nonpolar Solvent, Microhydrated Environment, and Dilute and Concentrated Acetic Acid: Ab Initio Quantum Chemical and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 107(17), 3086-3092. doi: 10.1021/jp027367k
Connolly, M. L. (1983). Analytical Molecular-Surface Calculation. Journal of Applied Crystallography, 16(OCT), 548-558. doi: 10.1107/s0021889883010985
Costa, G. M. N., Dias, T., Cardoso, M., Guerrieri, Y., Pessoa, F. L. P., de Melo, S. A. B. Vieira, & Embirucu, M. (2008). Prediction of Vapor-Liquid and Liquid-Liquid Equilibria for Polymer Systems: Comparison of Activity Coefficient Models. Fluid Phase Equilibria, 267(2), 140-149. doi: 10.1016/j.fluid.2008.03.005
Derawi, S. O., Zeuthen, J., Michelsen, M. L., Stenby, E. H., & Kontogeorgis, G. M. (2004). Application of the CPA Equation of State to Organic Acids. Fluid Phase Equilibria, 225(1-2), 107-113. doi: 10.1016/j.fluid.2004.08.021
Derissen, J. L. (1971). Reinvestigation of Molecular Structure of Acetic Acid Monomer and Dimer by Gas Electron Diffraction. Journal of Molecular Structure, 7(1-2), 67-&. doi: 10.1016/0022-2860(71)90008-1
Design Institute for Physical Properties, Sponsored by AIChE. DIPPR Project 801 - Full Version: Design Institute for Physical Property Research/AIChE.
Dominik, Aleksandra, Jain, Shekhar, & Chapman, Walter G. (2007). New Equation of State for Polymer Solutions Based on the Statistical Associating Fluid Theory (SAFT)-Dimer Equation for Hard-Chain Molecules. Industrial & Engineering Chemistry Research, 46(17), 5766-5774. doi: 10.1021/ie0616186
Economou, I. G. (2002). Statistical Associating Fluid theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures. Industrial & Engineering Chemistry Research, 41(5), 953-962. doi: 10.1021/ie0102201
Eichinge.Be, & Flory, P. J. (1968a). Thermodynamics of Polymer Solutions Part 2.-Polyisobutylene and Benzene. Transactions of the Faraday Society, 64(548P), 2053-2060. doi: 10.1039/tf9686402053
Eichinge.Be, & Flory, P. J. (1968b). Thermodynamics of Polymer Solutions Part 3.-Polyisobutylene and Cyclohexane. Transactions of the Faraday Society, 64(548P), 2061-2065. doi: 10.1039/tf9686402061
Eichinge.Be, & Flory, P. J. (1968c). Thermodynamics of Polymer Solutions Part 4.-Polyisobutylene and n-Pentane. Transactions of the Faraday Society, 64(548P), 2066-2072. doi: 10.1039/tf9686402066
Elbro, H. S., Fredenslund, A., & Rasmussen, P. (1990). A New Simple Equation for the Prediction of Solvent Activities in Polymer Solutions. Macromolecules, 23(21), 4707-4714. doi: 10.1021/ma00223a031
Emmeluth, C., Suhm, M. A., & Luckhaus, D. (2003). A Monomers-in-Dimers Model for Carboxylic Acid Dimers. Journal of Chemical Physics, 118(5), 2242-2255. doi: Doi 10.1063/1.1532339
Ericksen, D., Wilding, W. V., Oscarson, J. L., & Rowley, R. L. (2002). Use of the DIPPR Database for Development of QSPR Correlations: Normal Boiling Point. Journal of Chemical and Engineering Data, 47(5), 1293-1302. doi: Doi 10.1021/Je0255372
Estela-Uribe, J. F., De Mendoza, A., & Trusler, J. P. M. (2004). Helmholtz Energy, Extended Corresponding States and Local Composition Model for Fluid Mixtures. Fluid Phase Equilibria, 224(1), 125-142. doi: 10.1016/j.fluid.2004.04.006
Flemr, V. (1976a). A Note on Excess Gibbs Energy Equations Based on Local Composition Concept. Collection of Czechoslovak Chemical Communications, 41(11), 3347-3349.
Flemr, V. (1976b). Note on Excess Gibbs Energy Equations Based on Local Composition Concept. Collection of Czechoslovak Chemical Communications, 41(11), 3347-3349.
Flory, P.J. (1953). Principles of Polymer Chemistry. Ithaca: Cornell University Press.Fredenslund, Aage, Jones, Russell L., & Prausnitz, John M. (1975). Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE Journal, 21(6), 1086-1099. doi: 10.1002/aic.690210607
Gmehling, J., Onken, U., & Arlt, W. (1977). Vapor-Liquid Equilibrium Data Collection: Dechema.
Gmehling, J., Onken, U., & Rarey-Nies, J.R. (1978). Vapor-Liquid Equilibrium Data Collection: Dechema.
Gmehling, J., Xue, Z. M., & Mu, T. C. (2012). Reply to "Comments on ''Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium''". Industrial & Engineering Chemistry Research, 51(41), 13541-13543. doi: 10.1021/ie3024142
Gmehling, J.; Kolbe, B.; Kleiber, M.; Rarey, J. (2012). Chemical Thermodynamics for Process Simulation. Weinheim, Germany: Wiley-VCH.
Gmehling, J www.ddbst.de. (2008). Dortmund Data Bank and DDB Software Package. from DDBST GmbH
Abbott, M. M., & Prausnitz, J. M. (1987). Generalized van der Waals Theory - A Classical Perspective. Fluid Phase Equilibria, 37, 29-62.
Abrams, D. S., & Prausnitz, J. M. (1975). Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems. Aiche Journal, 21(1), 116-128. doi: 10.1002/aic.690210115
Akiyama, Y., Wakisaka, A., Mizukami, F., & Sakaguchi, K. (1998). Solvent Effect on Acid-Base Clustering Between Acetic Acid and Pyridine. Journal of the Chemical Society-Perkin Transactions 2(1), 95-99. doi: 10.1039/a704540i
Almennin.A, Bastians.O, & Motzfeld.T. (1969). A Reinvestigation of Structure of Monomer and Dimer Formic Acid by Gas Electron Diffraction Technique Acta Chemica Scandinavica, 23(8), 2848-&. doi: 10.3891/acta.chem.scand.23-2848
Anderson, T. F., & Prausnitz, J. M. (1980). Computational Methods for High-Pressure Phase-Equilibria and Other Fluid-Phase Properties Using A Partition-Function .1. Pure Fluids. Industrial & Engineering Chemistry Process Design and Development, 19(1), 1-8. doi: 10.1021/i260073a001
Backes, G. (2006). BioPerspectives in Focus: Nutrition for the Future - DECHEMA Conference on 26th April 2006 in Potsdam. Ernahrungs-Umschau, 53(6), 244-246.
Bae, Y. C., Shim, J. J., Soane, D. S., & Prausnitz, J. M. (1993). Representation of Vapor Liquid and Liquid Liquid Equilibria for Binary-Systems Containing Polymers - Applicability of an Extended Flory Huggins Equation. Journal of Applied Polymer Science, 47(7), 1193-1206. doi: 10.1002/app.1993.070470707
Baniasadi, M., & Ghader, S. (2011). Description of Polymer Solutions Phase Equilibria by Cubic Equation of State with Different Mixing Rules. Journal of Engineering Thermophysics, 20(1), 115-127. doi: 10.1134/s1810232811010103
Barton, J. R., & Hsu, C. C. (1969). P-V-T-X Properties of Associated Vapors of Formic and Acetic Acids. Journal of Chemical and Engineering Data, 14(2), 184-&. doi: 10.1021/je60041a013
Bawn, C. E. H., Freeman, R. F. J., & Kamaliddin, A. R. (1950). High Polymerr Solutions Part 1.- Vapour Pressure of Polystyrene Solutions. Transactions of the Faraday Society, 46(8), 677-684. doi: 10.1039/tf9504600677
Bawn, C. E. H., & Wajid, M. A. (1956). High Polymer Solutiona Part 7.- Vapour Pressure of Polystyrene Solutions in Acetone, Chloroform and Propyl Acetate. Transactions of the Faraday Society, 52(12), 1658-1664. doi: 10.1039/tf9565201658
Becke, A. D. (1993). Density-Functional Thermochemistry .3. the Role of Exact Exchange. Journal of Chemical Physics, 98(7), 5648-5652. doi: 10.1063/1.464913
Bertie, J. E., Eysel, H. H., Permann, D. N. S., & Kalantar, D. H. (1985). Correction of the Low-Frequency Raman-Spectra of Gaseous Formic and Acetic-Acids to PDS Spectra. Journal of Raman Spectroscopy, 16(2), 137-138. doi: 10.1002/jrs.1250160209
Bertie, J. E., & Michaelian, K. H. (1982). The Raman-Spectrum of Gaseous Aceetic-Acid at 21-Degrees-C. Journal of Chemical Physics, 77(11), 5267-5271. doi: 10.1063/1.443795
Bertucco, A., & Mio, C. (1996). Prediction of Vapor-Liquid Equlibrium for Polymer Solutions by a Group-Contribution Redlich-Kwong-Soave Equation of State. Fluid Phase Equilibria, 117(1-2), 18-25. doi: 10.1016/0378-3812(95)02931-1
Bich, E., Neumann, A. K., & Vogel, N. E. (1996). Dimerization in Acetic Acid Vapor and Evaluation of PPT Measurements with an Equation of State for a Reactive Fluid. Fluid Phase Equilibria, 125(1-2), 67-78. doi: 10.1016/s0378-3812(96)03081-6
Bogdanic, G., & Fredenslund, A. (1994). Revision of the Group-Contribution Flory Equation of State for Phase-Equilibria Calculations in Mixtures with Polymers .1. Prediction of Vapor-Liquid-Equilibria for Polymer-Solutions. Industrial & Engineering Chemistry Research, 33(5), 1331-1340. doi: 10.1021/ie00029a032
Booth, C., & Devoy, C. J. (1971). Thermodynamics of Mixtures off Poly(Ethylene Oxide) and Benzene. Polymer, 12(5), 309-319. doi: 10.1016/0032-3861(71)90053-x
Briggs, J. M., Nguyen, T. B., & Jorgensen, W. L. (1991). Monte-Carlo Simulations of Liquid Acetic-Acid and Methyl Acetate with the Opls Potential Functions. Journal of Physical Chemistry, 95(8), 3315-3322. doi: 10.1021/j100161a065
Brooker, M. H., Nielsen, O. F., & Praestgaard, E. (1988). Assessment of Correction Procedures for Reduction of Raman-Spectra. Journal of Raman Spectroscopy, 19(2), 71-78. doi: 10.1002/jrs.1250190202. Cerius2, Dmol3, version 4.0. (1999.). San Diego, CA Molecular Simulations Inc.
Chen, F., Fredenslund, A., & Rasmussen, P. (1990). Group-Contribution Flory Equation of State for Vapor-Liquid Equilibria in Mixtures with Polymers. Industrial & Engineering Chemistry Research, 29(5), 875-882. doi: 10.1021/ie00101a024
Chocholousova, J., Vacek, J., & Hobza, P. (2003). Acetic Acid Dimer in the Gas Phase, Nonpolar Solvent, Microhydrated Environment, and Dilute and Concentrated Acetic Acid: Ab Initio Quantum Chemical and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 107(17), 3086-3092. doi: 10.1021/jp027367k
Connolly, M. L. (1983). Analytical Molecular-Surface Calculation. Journal of Applied Crystallography, 16(OCT), 548-558. doi: 10.1107/s0021889883010985
Costa, G. M. N., Dias, T., Cardoso, M., Guerrieri, Y., Pessoa, F. L. P., de Melo, S. A. B. Vieira, & Embirucu, M. (2008). Prediction of Vapor-Liquid and Liquid-Liquid Equilibria for Polymer Systems: Comparison of Activity Coefficient Models. Fluid Phase Equilibria, 267(2), 140-149. doi: 10.1016/j.fluid.2008.03.005
Derawi, S. O., Zeuthen, J., Michelsen, M. L., Stenby, E. H., & Kontogeorgis, G. M. (2004). Application of the CPA Equation of State to Organic Acids. Fluid Phase Equilibria, 225(1-2), 107-113. doi: 10.1016/j.fluid.2004.08.021
Derissen, J. L. (1971). Reinvestigation of Molecular Structure of Acetic Acid Monomer and Dimer by Gas Electron Diffraction. Journal of Molecular Structure, 7(1-2), 67-&. doi: 10.1016/0022-2860(71)90008-1
Design Institute for Physical Properties, Sponsored by AIChE. DIPPR Project 801 - Full Version: Design Institute for Physical Property Research/AIChE.
Dominik, Aleksandra, Jain, Shekhar, & Chapman, Walter G. (2007). New Equation of State for Polymer Solutions Based on the Statistical Associating Fluid Theory (SAFT)-Dimer Equation for Hard-Chain Molecules. Industrial & Engineering Chemistry Research, 46(17), 5766-5774. doi: 10.1021/ie0616186
Economou, I. G. (2002). Statistical Associating Fluid theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures. Industrial & Engineering Chemistry Research, 41(5), 953-962. doi: 10.1021/ie0102201
Eichinge.Be, & Flory, P. J. (1968a). Thermodynamics of Polymer Solutions Part 2.-Polyisobutylene and Benzene. Transactions of the Faraday Society, 64(548P), 2053-2060. doi: 10.1039/tf9686402053
Eichinge.Be, & Flory, P. J. (1968b). Thermodynamics of Polymer Solutions Part 3.-Polyisobutylene and Cyclohexane. Transactions of the Faraday Society, 64(548P), 2061-2065. doi: 10.1039/tf9686402061
Eichinge.Be, & Flory, P. J. (1968c). Thermodynamics of Polymer Solutions Part 4.-Polyisobutylene and n-Pentane. Transactions of the Faraday Society, 64(548P), 2066-2072. doi: 10.1039/tf9686402066
Elbro, H. S., Fredenslund, A., & Rasmussen, P. (1990). A New Simple Equation for the Prediction of Solvent Activities in Polymer Solutions. Macromolecules, 23(21), 4707-4714. doi: 10.1021/ma00223a031
Emmeluth, C., Suhm, M. A., & Luckhaus, D. (2003). A Monomers-in-Dimers Model for Carboxylic Acid Dimers. Journal of Chemical Physics, 118(5), 2242-2255. doi: Doi 10.1063/1.1532339
Ericksen, D., Wilding, W. V., Oscarson, J. L., & Rowley, R. L. (2002). Use of the DIPPR Database for Development of QSPR Correlations: Normal Boiling Point. Journal of Chemical and Engineering Data, 47(5), 1293-1302. doi: Doi 10.1021/Je0255372
Estela-Uribe, J. F., De Mendoza, A., & Trusler, J. P. M. (2004). Helmholtz Energy, Extended Corresponding States and Local Composition Model for Fluid Mixtures. Fluid Phase Equilibria, 224(1), 125-142. doi: 10.1016/j.fluid.2004.04.006
Flemr, V. (1976a). A Note on Excess Gibbs Energy Equations Based on Local Composition Concept. Collection of Czechoslovak Chemical Communications, 41(11), 3347-3349.
Flemr, V. (1976b). Note on Excess Gibbs Energy Equations Based on Local Composition Concept. Collection of Czechoslovak Chemical Communications, 41(11), 3347-3349.
Flory, P.J. (1953). Principles of Polymer Chemistry. Ithaca: Cornell University Press.Fredenslund, Aage, Jones, Russell L., & Prausnitz, John M. (1975). Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE Journal, 21(6), 1086-1099. doi: 10.1002/aic.690210607
Gmehling, J., Onken, U., & Arlt, W. (1977). Vapor-Liquid Equilibrium Data Collection: Dechema.
Gmehling, J., Onken, U., & Rarey-Nies, J.R. (1978). Vapor-Liquid Equilibrium Data Collection: Dechema.
Gmehling, J., Xue, Z. M., & Mu, T. C. (2012). Reply to "Comments on ''Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium''". Industrial & Engineering Chemistry Research, 51(41), 13541-13543. doi: 10.1021/ie3024142
Gmehling, J.; Kolbe, B.; Kleiber, M.; Rarey, J. (2012). Chemical Thermodynamics for Process Simulation. Weinheim, Germany: Wiley-VCH.
Gmehling, J gen. (1977 and onward). Vapor-Liquid Equilibrium Data Collection. Frankfurt/Main: Dechema.
Gregory, J. K., & Clary, D. C. (1996). Structure of Water Clusters. The Contribution of Many-Body Forces, Monomer Relaxation, and Vibrational Zero-Point Energy. Journal of Physical Chemistry, 100(46), 18014-18022. doi: 10.1021/jp9616019
Gross, J., & Sadowski, G. (2001). Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Industrial & Engineering Chemistry Research, 40(4), 1244-1260. doi: 10.1021/ie0003887
Guggenheim, E.A. (1952). Mixtures. Oxford: Clarendon Press.
Gupta, R. B., & Prausnitz, J. M. (1995). Vapor-Liquid Equilibria of Copolymer + Solvent and Homopolymer + Solvent Binaries: New Experimental Data and Their Correlation. Journal of Chemical and Engineering Data, 40(4), 784-791. doi: 10.1021/je00020a011
Haghtalab, A., & Espanani, R. (2004). A New Model and Extension of Wong-Sandler Mixing Rule for Prediction of (Vapour Plus Liquid) Equilibrium of Polymer Solutions Using EOS/G(E). Journal of Chemical Thermodynamics, 36(10), 901-910. doi: 10.1016/j.jct.2004.06.010
Hayden, J. G., & Oconnell, J. P. (1975). Generalized Method for Predicting 2nd Viral-Coefficients. Industrial & Engineering Chemistry Process Design and Development, 14(3), 209-216. doi: 10.1021/i260055a003
Heyne, K., Huse, N., Dreyer, J., Nibbering, E. T. J., Elsaesser, T., & Mukamel, S. (2004). Coherent Low-Frequency Motions of Hydrogen Bonded Acetic Acid Dimers in the Liquid Phase. Journal of Chemical Physics, 121(2), 902-913. doi: 10.1063/1.1762873
High, M. S., & Danner, R. P. (1989). A Group Contribution Equation of State for Polymer-Solutions. Fluid Phase Equilibria, 53, 323-330. doi: 10.1016/0378-3812(89)80100-1
High, M. S., & Danner, R. P. (1990). Application of the Group Contribution Lattice-Fluid EOS to Polymer Solutions. Aiche Journal, 36(11), 1625-1632. doi: 10.1002/aic.690361102
Hildebrand, Joel H., & Scott, Robert L. (1950). The Solubility of Nonelectrolytes (3rd ed.). New York: Reinhold Pub. Co.
Hobza, P., Zahradnik, R., & Muller-Dethlefs, K. (2006). The World of Non-Covalent Interactions: 2006. Collection of Czechoslovak Chemical Communications, 71(4), 443-531. doi: 10.1135/cccc20060443
Holten-Andersen, J., Rasmussen, P., & Fredenslund, A. (1987). Phase Equilibria of Polymer Solutions by Group Contribution. 1. Vapor-Liquid Equilibria. Industrial & Engineering Chemistry Research, 26(7), 1382-1390. doi: 10.1021/ie00067a019
Hsieh, C. M., & Lin, S. T. (2009). First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial & Engineering Chemistry Research, 48(6), 3197-3205. doi: 10.1021/ie801118a
Hsieh, C. M., & Lin, S. T. (2010). Prediction of Liquid-Liquid Equilibrium from the Peng-Robinson Plus COSMOSAC Equation of State. Chemical Engineering Science, 65(6), 1955-1963. doi: 10.1016/j.ces.2009.11.036
Hsieh, C. M., & Lin, S. T. (2011). First-Principles Prediction of Vapor-Liquid-Liquid Equilibrium from the PR Plus COSMOSAC Equation of State. Industrial & Engineering Chemistry Research, 50(3), 1496-1503. doi: 10.1021/ie100781a
Hsieh, Chieh-Ming, & Lin, Shiang-Tai. (2008). Determination of Cubic Equation of State Parameters for Pure Fluids from First Principle Solvation Calculations. Aiche Journal, 54(8), 2174-2181. doi: 10.1002/aic.11552
Hsieh, Chieh-Ming, & Lin, Shiang-Tai. (2009a). First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial & Engineering Chemistry Research, 48(6), 3197-3205. doi: 10.1021/ie801118a
Hsieh, Chieh-Ming, & Lin, Shiang-Tai. (2009b). Prediction of 1-octanol-water partition coefficient and infinite dilution activity coefficient in water from the PR plus COSMOSAC model. Fluid Phase Equilibria, 285(1-2), 8-14. doi: 10.1016/j.fluid.2009.06.009
Hsieh, Chieh-Ming, & Lin, Shiang-Tai. (2010). Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state. Chemical Engineering Science, 65(6), 1955-1963. doi: 10.1016/j.ces.2009.11.036
Hsieh, Chieh-Ming, & Lin, Shiang-Tai. (2012). First-Principles Prediction of Phase Equilibria Using the PR Plus COSMOSAC Equation of State. Asia-Pacific Journal of Chemical Engineering, 7, S1-S10. doi: 10.1002/apj.608
Hsieh, Chieh-Ming, Sandler, Stanley I., & Lin, Shiang-Tai. (2010). Improvements of COSMO-SAC for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions. Fluid Phase Equilibria, 297(1), 90-97. doi: 10.1016/j.fluid.2010.06.011
Hsieh, Chieh-Ming, Wang, Shu, Lin, Shiang-Tai, & Sandler, Stanley I. (2011). A Predictive Model for the Solubility and Octanol-Water Partition Coefficient of Pharmaceuticals. Journal of Chemical and Engineering Data, 56(4), 936-945. doi: 10.1021/je1008872
Huggins, M.L. (1958). Physical Chemistry of High Polymers, . New York: Willey.
Huron, M. J., & Vidal, J. (1979). New Mixing Rules in Simple Equations of State for Repersenying Vapor-Liquid-Equilibria of Strongly Non-Ideal Mixtires. Fluid Phase Equilibria, 3(4), 255-271. doi: 10.1016/0378-3812(79)80001-1
Johnson, E. W., & Nash, L. K. (1950). The Vapor-Phase Association of Acetic and Trimethylacetic Acids. Journal of the American Chemical Society, 72(1), 547-556. doi: 10.1021/ja01157a140
Jones, Adam T., Derawi, Samer, Danner, Ronald P., & Duda, J. Larry. (2007). A Simplified Approach to Vapor-Liquid Equilibria Calculations with the Group-Contribution Lattice-Fluid Equation of State. Fluid Phase Equilibria, 259(1), 116-122. doi: 10.1016/j.fluid.2007.01.023
Jung, J. K., Joung, S. N., Shin, H. Y., Kim, S. Y., Yoo, K. P., Huh, W., & Lee, C. S. (2002). Measurements and Correlation of Hydrogen-Bonding Vapor Sorption Equilibrium Data of Binary Polymer Solutions. Korean Journal of Chemical Engineering, 19(2), 296-300. doi: 10.1007/bf02698417
Kannan, D. C., Duda, J. L., & Danner, R. P. (2005). A Free-Volume Term Based on the van der Waals Partition Function for the UNIFAC Model. Fluid Phase Equilibria, 228, 321-328. doi: 10.1016/j.fluid.2004.08.012
Karle, Jerome, & Brockway, L. O. (1944). An Electron Diffraction Investigation of the Monomers and Dimers of Formic, Acetic and Trifluoroacetic Acids and the Dimer of Deuterium Acetate. [n. p.
Klamt, A., & Jonas, V. (1996). Treatment of the Outlying Charge in Continuum Solvation Models. Journal of Chemical Physics, 105(22), 9972-9981. doi: 10.1063/1.472829
Klamt, A., Krooshof, G. J. P., & Taylor, R. (2002). COSMOSPACE: Alternative to Conventional Activity-Coefficient Models. Aiche Journal, 48(10), 2332-2349. doi: 10.1002/aic.690481023
Klamt, A., & Schuurmann, G. (1993a). COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2(5), 799-805.
Klamt, A., & Schuurmann, G. (1993b). COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. Journal of the Chemical Society,Perkin Transactions 2(5), 799-805. doi: 10.1039/p29930000799
Klamt, Andreas, Eckert, Frank, & Hornig, Martin. (2001). COSMO-RS: A Novel View to Physiological Solvation and Partition Questions. Journal of Computer-Aided Molecular Design, 15(4), 355-365. doi: 10.1023/A:1011111506388
Kontogeorgis, G. M., Fredenslund, A., & Tassios, D. P. (1993). Simple Activity Coefficient Model for the Prediction of Solvent Activities in Polymer Solutions. Industrial & Engineering Chemistry Research, 32(2), 362-372. doi: 10.1021/ie00014a013
Kontogeorgis, G. M., Michelsen, M. L., Folas, G. K., Derawi, S., von Solms, N., & Stenby, E. H. (2006a). Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. Industrial & Engineering Chemistry Research, 45(14), 4855-4868. doi: 10.1021/ie051305v
Kontogeorgis, G. M., Michelsen, M. L., Folas, G. K., Derawi, S., von Solms, N., & Stenby, E. H. (2006b). Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 2. Cross-associating and multicomponent systems. Industrial & Engineering Chemistry Research, 45(14), 4869-4878. doi: 10.1021/ie051306n
Kouskoumvekaki, I. A., Michelsen, M. L., & Kontogeorgis, G. M. (2002). An Improved Entropic Expression for Polymer Solutions. Fluid Phase Equilibria, 202(2), 325-335. doi: 10.1016/s0378-3812(02)00124-3
Largo, J., & Solana, J. R. (2003). Generalized van der WaalsTheory for the Thermodynamic Properties of Square-Well Fluids. Physical Review E, 67(6).
Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Physical Review B, 37(2), 785-789. doi: 10.1103/PhysRevB.37.785
Lee, L. L., Chung, T. H., & Starling, K. E. (1983). A Molecular Theory for the Thermodynamic Behaivor of Polar Mixtures .1. the Statistical-Mechanical Local-Composition Model. Fluid Phase Equilibria, 12(1-2), 105-124. doi: 10.1016/0378-3812(83)85015-8
Lee, Seung Seok, Sun, Yang Kook, & Bae, Young Chan. (2008). Vapor-Liquid Equilibria for Polymer Solutions Through a Group-Contribution Method: Chain-Length Dependence. Journal of Applied Polymer Science, 110(5), 2634-2640. doi: 10.1002/app.28767
Li, Jianwei, Lei, Zhigang, Chen, Biaohua, & Li, Chengyue. (2007). Extension of the Group-Contribution Lattice-Fluid Equation of State. Fluid Phase Equilibria, 260(1), 135-145. doi: 10.1016/j.fluid.2006.09.003
Lin, S. T. (2006). Thermodynamic Equations of State from Molecular Solvation. Fluid Phase Equilibria, 245(2), 185-192.
Lin, S. T., Chang, J., Wang, S., Goddard, W. A., & Sandler, S. I. (2004). Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model. Journal of Physical Chemistry A, 108(36), 7429-7439. doi: 10.1021/jp048813n
Lin, S. T., & Sandler, S. I. (1999a). Infinite Dilution Activity Coefficients from Ab Initio Solvation Calculations. Aiche Journal, 45(12), 2606-2618. doi: 10.1002/aic.690451217
Lin, S. T., & Sandler, S. I. (1999b). Prediction of Octanol-Water Partition Coefficients Using a Group Contribution Solvation Model. Industrial & Engineering Chemistry Research, 38(10), 4081-4091. doi: 10.1021/ie990391u
Lin, S. T., & Sandler, S. I. (2002). A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Industrial & Engineering Chemistry Research, 41(5), 899-913. doi: Doi 10.1021/Ie001047w
Lin, S. T., & Sandler, S. I. (2004). A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Industrial & Engineering Chemistry Research, 43(5), 1322-1322. doi: 10.1021/ie0308689
Lin, Shiang-Tai, & Hsieh, Chieh-Ming. (2006). Efficient and Accurate Solvation Energy Calculation from Polarizable Continuum Models. Journal of Chemical Physics, 125(12). doi: 10.1063/1.2354489
Lin, Shiang-Tai, Hsieh, Chieh-Ming, & Lee, Ming-Tsung. (2007). Solvation and Chemical Engineering Thermodynamics. Journal of the Chinese Institute of Chemical Engineers, 38(5-6), 467-476. doi: 10.1016/j.jcice.2007.08.002
Liu, Q. L., & Cheng, Z. F. (2005). A Modified UNIFAC Model for the Prediction of Phase Equilibrium for Polymer Solutions. Journal of Polymer Science Part B-Polymer Physics, 43(18), 2541-2547. doi: 10.1002/polb.20533
Louli, V., & Tassios, D. (2000). Vapor-Liquid Equilibrium in Polymer-Solvent Systems with a Cubic Equation of State. Fluid Phase Equilibria, 168(2), 165-182. doi: 10.1016/s0378-3812(99)00339-8
MacDougall, F. H. (1936). The Molecular State of the Vapor of Acetic Acid at Low Pressures at 25, 30, 35 and 40o. Journal of the American Chemical Society, 58, 2585-2591. doi: 10.1021/ja01303a060
McClelland, Heidi Engelhardt, & Jurs, Peter C. (2000). Quantitative Structure−Property Relationships for the Prediction of Vapor Pressures of Organic Compounds from Molecular Structures. Journal of Chemical Information and Computer Sciences, 40(4), 967-975. doi: 10.1021/ci990137c
McDermott, C., & Ashton, N. (1977). Note on the Definition of Local Composition. Fluid Phase Equilibria, 1(1), 33-35.
McGlashan, M., & Williamson, A. G. (1961). Thermodynamics of Mixvures of N-Hexane+N-Hexadecane. Part 2.- Vapour Pressures and Activity Coefficients. Transactions of the Faraday Society, 57(4), 588-600. doi: 10.1039/tf9615700588
McKenna, T. F., & Malone, M. F. (1990). Polymer Process Desing .1. Continuous Prodution of Chain Growth Homopolymers. Computers & Chemical Engineering, 14(10), 1127-1149. doi: 10.1016/0098-1354(90)85008-x
Michelsen, M. L. (1990). A Modified Huron-Vidal Mixing Rule for Cubic Equations of State. Fluid Phase Equilibria, 60(1-2), 213-219. doi: 10.1016/0378-3812(90)85053-d
Mollerup, J. (1981). A Note on Excess Gibbs Energy Models, Equations of State and the Local Composition Concept. Fluid Phase Equilibria, 7(2), 121-138. doi: 10.1016/0378-3812(81)85017-0
Mullins, E., Liu, Y. A., Ghaderi, A., & Fast, S. D. (2008). Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 47(5), 1707-1725. doi: 10.1021/ie0711022
Mullins, E., Oldland, R., Liu, Y. A., Wang, S., Sandler, S. I., Chen, C. C., . . . Seavey, K. C. (2006). Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 45(12), 4389-4415. doi: 10.1021/ie060370h
Muro-Sune, N., Kontogeorgis, G. M., von Solms, N., & Michelsen, M. L. (2008). Phase Equilibrium Modelling for Mixtures with Acetic Acid Using an Association Equation of State. Industrial & Engineering Chemistry Research, 47(15), 5660-5668. doi: 10.1021/ie071205k
Myers, Richard L. (2007). The 100 Most Important Chemical Compounds : a Reference Guide. Westport, Conn.: Greenwood Press.
Nakabayashi, T., Kosugi, K., & Nishi, N. (1999). Liquid Structure of Acetic Acid Studied By Raman Spectroscopy and Ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry A, 103(43), 8595-8603. doi: 10.1021/jp991501d
Nakabayashi, T., & Nishi, N. (2002). States of Molecular Associates in Binary Mixtures of Acetic Acid with Protic and Aprotic Polar Solvents: A Raman Spectroscopic Study. Journal of Physical Chemistry A, 106(14), 3491-3500. doi: 10.1021/jp012606v
Nishi, N., Nakabayashi, T., & Kosugi, K. (1999). Raman Spectroscopic Study on Acetic Acid Clusters in Aqueous Solutions: Dominance of Acid-Acid Association Producing Microphases. Journal of Physical Chemistry A, 103(50), 10851-10858. doi: 10.1021/jp9929061
Oishi, T., & Prausnitz, J. M. (1978). Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method. Industrial & Engineering Chemistry Process Design and Development, 17(3), 333-339. doi: 10.1021/i260067a021
Orbey, N., & Sandler, S. I. (1994). Vapor-Liquid-Equilibrium of Polymer-Solutions Using a Cubic Equation of State. Aiche Journal, 40(7), 1203-1209. doi: 10.1002/aic.690400711
Palamara, J. E., Zielinski, J. M., Hamedi, M., Duda, J. L., & Danner, R. P. (2004). Vapor-Liquid Equilibria of Water, Methanol, and Methyl Acetate in Poly(vinyl acetate) and Partially and Fully Hydrolyzed Poly(Vinyl Alcohol). Macromolecules, 37(16), 6189-6196. doi: 10.1021/ma049666u
Patterso.D. (1969). Free Volume and Polymer Solubility . A Qualitative View. Macromolecules, 2(6), 672-677. doi: 10.1021/ma60012a021
Pedrosa, Nuno, Vega, Lourdes F., Coutinho, Joao A. P., & Marrucho, Isabel M. (2006). Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. Macromolecules, 39(12), 4240-4246. doi: 10.1021/ma060584a
Penfold, R., Satherley, J., & Nordholm, S. (1995). Generalized van-der-Waals Theory of Fluids - Vapor- Liquid-Equilibria in Simple Binary-Mixtures. Fluid Phase Equilibria, 109(2), 183-204. doi: 10.1016/0378-3812(95)02734-v
Peng, D., & Robinson, D. B. (1976). New 2-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64.
Pfohl, O., & Dohrn, R. (2004). Provision of Thermodynamic Properties of Polymer Systems for Industrial Applications. Fluid Phase Equilibria, 217(2), 189-199. doi: 10.1016/j.fluid.2003.06.001
Pividal, K. A., Sterner, C., Sandler, S. I., & Orbey, H. (1992). Vapor-Liquid-Equilibrium from Infinite Dilution Activity-Coefficients - Measurement and Prediction of Oxygenated Fuel Additives with Alkanes. Fluid Phase Equilibria, 72, 227-249. doi: 10.1016/0378-3812(92)85028-7
ProcessNet Medals and DECHEMA Student Prizes in Karlsruhe. (2012). Chemie Ingenieur Technik, 84(10), 1617-1623. doi: DOI 10.1002/cite.201290095
Project 801, Evaluated Process Design Data, Public Release Documentation, Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers (AIChE)
Renon, H., & Prausnit.Jm. (1968). Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. Aiche Journal, 14(1), 135-&. doi: 10.1002/aic.690140124
Ritter, H. L., & Simons, J. H. (1945). The Molecular State of Acetic Acid Vapor. Journal of the American Chemical Society, 67(5), 757-762. doi: 10.1021/ja01221a018
Robinson, D. B., Peng, D. Y., & Ng, H. J. (1979). Prediction of Incipient Solid Formation Using an Equation of State. Abstracts of Papers of the American Chemical Society(Apr), 116-116.
Sorensen, J.M., & Arlt, W. (1979). Liquid-Liquid Equilibrium Data Collection: Binary Systems: DECHEMA, Deutsche Gesellschaft fur Chemisches Apparatewesen.
Sako, T., Wu, A. H., & Prausnitz, J. M. (1989). A Cubic Equation of State for High-pressure Phase Equilibria of Mixtures Containing Polymers and Volatile Fluids. Journal of Applied Polymer Science, 38(10), 1839-1858. doi: 10.1002/app.1989.070381006
Sanchez, I. C., & Cho, J. (1995). A Universal Equation of State for Polymer Liquids. Polymer, 36(15), 2929-2939. doi: 10.1016/0032-3861(95)94342-q
Sandler, S. I. (1985). The Generalized van der Waals Partition-Function .1. Basic Theory. Fluid Phase Equilibria, 19(3), 233-257.
Sandler, S. I. (2006). Chemical, Biochemical, and Engineering Thermodynamics (4th ed. ed.). New York: John Wiley & Sons, Inc.
Soave, Giorgio. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197-1203.
Staudt, P. B., Soares, R. de P., Secchi, A. R., & Cardozo, N. S. M. (2010). A New Cubic Equation of State for Prediction of VLE of Polymer Solutions. Fluid Phase Equilibria, 295(1), 38-45. doi: 10.1016/j.fluid.2010.03.034
Staverman, A. J. (1950a). The Entropy of High Polymer Solutions. Recueil des Travaus Chimiques des Pays-Bas, 69, 163-174.
Staverman, A. J. (1950b). The Entropy of High Polymer Solutions. Generalization of Formulae. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 69(2), 163-174.
Stephan, W., Noble, R. D., & Koval, C. A. (1995). Design Methodology for a Membrane Distillation Column Hybrid Process. Journal of Membrane Science, 99(3), 259-272. doi: 10.1016/0376-7388(94)00255-w
Tait, P. J. T., & Livesey, P. J. (1970). Thermodynamic Studies on Poly(Alpha-Olefin)-Solvent Systems. Polymer, 11(7), 359-373. doi: 10.1016/0032-3861(70)90042-x
Tanbonliong, J. O., & Prausnitz, J. M. (1997). Vapour-Liquid Equilibria for Some Binary and Ternary Polymer Solutions. Polymer, 38(23), 5775-5783. doi: 10.1016/s0032-3861(97)00143-2
Taylor, M. D. (1951). The Vapor Phase Dissociation of Some Carboxylic Acids .1. Acetic Acid. Journal of the American Chemical Society, 73(1), 315-317. doi: 10.1021/ja01145a103
Vera, J. H., & Prausnitz, J. M. (1972). Generalized van der Waals Theory for Dense Fluids. The Chemical Engineering Journal, 3, 1-13.
Voutsas, E., Louli, V., Boukouvalas, C., Magoulas, K., & Tassios, D. (2006). Thermodynamic Property Calculations with the Universal Mixing Rule for EoS/G(E) Models: Results with the Peng-Robinson EoS and a UNIFAC Model. Fluid Phase Equilibria, 241(1-2), 216-228. doi: 10.1016/j.fluid.2005.12.028
Voutsas, E., Magoulas, K., & Tassios, D. (2004). Universal Mixing Rule for Cubic Equations of State Applicable to Symmetric and Asymmetric Systems: Results with the Peng-Robinson Equation of State. Industrial & Engineering Chemistry Research, 43(19), 6238-6246. doi: 10.1021/ie049580p
Walas, S.M. (1985). Fazovyje Ravnovesija V Chimiceskoj Technologii v 2 Castach: Butterworths Tolley Limited.
Wang, Li Sheng. (2007). Calculation of Vapor-Liquid Equilibria of Polymer Solutions and Gas Solubilities in Molten Polymers Based on PSRK Equation of State. Fluid Phase Equilibria, 260(1), 105-112. doi: 10.1016/j.fluid.2007.04.021
Wang, S., Stubbs, J. M., Siepmann, J. I., & Sandler, S. I. (2005). Effects of Conformational Distributions on Sigma Profiles in COSMO Theories. Journal of Physical Chemistry A, 109(49), 11285-11294. doi: 10.1021/jp053859h
Wang, Shu, Sandler, Stanley I., & Chen, Chau-Chyun. (2007). Refinement of COSMO-SAC and the Applications. Industrial & Engineering Chemistry Research, 46(22), 7275-7288. doi: 10.1021/ie070465z
Weidlich, Ulrich, & Gmehling, Juergen. (1987). A Modified UNIFAC Model. 1. Prediction of VLE, hE, and .Gamma..infin. Industrial & Engineering Chemistry Research, 26(7), 1372-1381. doi: 10.1021/ie00067a018
Wen H, Elbro HS, Alessi P. (1992). Polymer Solution Data Collection. Frankfurt: DECHEMA.
Wibawa, G., Takishima, S., Sato, Y., & Masuoka, H. (2005). An Improved Prediction Result of Entropic-FV Model for Vapor–Liquid Equilibria of Solvent–Polymer Systems. Journal of Applied Polymer Science, 97(3), 1145-1153. doi: 10.1002/app.21782
Wilson, Grant M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86, 127-130.
Wohl, K. (1946). Thermodynamic Evaluation of Binary and Ternary Liquid Syatems. Transactions of the American Institute of Chemical Engineers, 42(2), 215-249.
Wohlfarth, Christian. (2004). CRC Handbook of Thermodynamic Data of Aqueous Polymer Solutions. Boca Raton, FL: CRC Press.
Wohlfarth, Christian. (2009). Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology - New Series, Part 6D1: Springer.
Wong, D. S. H., & Sandler, S. I. (1992). A Theoretically Correct Mixing Rule for Cubic Equations of State. Aiche Journal, 38(5), 671-680. doi: 10.1002/aic.690380505
Wu, D. W., Cui, Y. P., & Donohue, M. D. (1998). Local Composition Models for Lattice Mixtures. Industrial & Engineering Chemistry Research, 37(8), 2936-2946. doi: 10.1021/ie950503r
Xantheas, S. S., Burnham, C. J., & Harrison, R. J. (2002). Development of Transferable Interaction Models for Water. II. Accurate Energetics of the First Few Water Clusters from First Principles. Journal of Chemical Physics, 116(4), 1493-1499. doi: 10.1063/1.1423941
Yang, Li, Xu, Xiaochun, Peng, Changjun, Liu, Honglai, & Hu, Ying. (2010). Prediction of Vapor-Liquid Equilibrium for Polymer Solutions Based on the COSMO-SAC Model. Aiche Journal, 56(10), 2687-2698. doi: 10.1002/aic.12178
Yu, M. L., & Chen, Y. P. (1994). Correlation of Liquid- Liquid Phase-Equilibria Using the Saft Equation of State. Fluid Phase Equilibria, 94, 149-165. doi: 10.1016/0378-3812(94)87055-1
Zhong, C. L., & Masuoka, H. (1996). A New Mixing Rule for Cubic Equations of State and its Application to Vapor-Liquid Equilibria of Polymer Solutions. Fluid Phase Equilibria, 123(1-2), 59-69. doi: 10.1016/s0378-3812(96)90011-4
Zhong, C. L., Sato, Y., Masuoka, H., & Chen, X. N. (1996). Improvement of Predictive Accuracy of the UNIFAC Model for Vapor-Liquid Equilibria of Polymer Solutions. Fluid Phase Equilibria, 123(1-2), 97-106. doi: 10.1016/s0378-3812(96)90015-1

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top