|
1.Hasan, M. A.; Sumathy, K., Photovoltaic thermal module concepts and their performance analysis: A review, Renew. Sust. Energy Rev., 2010, 14, 1845-1859. 2.Markvart, T., Solar electricity. John Wiley & Sons, New York, 2000. 3.Tsokos, K. A., Physics for the IB Diploma, Cambridge University Press, United Kingdom, 2010. 4.Chapin, D.; Fuller, C.; Pearson, G., A new silicon p‐n junction photocell for converting solar radiation into electrical power, J. Appl. Phys., 1954, 25, 676-677. 5.Wu, X.; Keane, J.; Dhere, R.; DeHart, C.; Duda, A.; Gessert, T.; Asher, S.; Levi, D.; Sheldon, P., 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell, Proceedings of the 17th European photovoltaic solar energy conference, James & James Ltd., London, 2001, 995-1000. 6.Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W., Solar cell efficiency tables, Prog. Photovoltaics, 2002, 10, 55-61. 7.Gratzel, M., Photoelectrochemical cells, Nature, 2001, 414, 338-344. 8.Bube, R. H.; Bube, R. H., Photovoltaic Mater., World Scientific, 1998. 9.Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-sensitized solar cells with Cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science, 2011, 334, 629-634. 10.Becquerel, A. E., Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques, C. R. Acad. Sci., 1839, 9, 145-149. 11.Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38. 12.O''Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740. 13.Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., 2005, 44, 6841-6851. 14.Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordin. Chem. Rev., 2004, 248, 1381-1389. 15.Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S., Dye-sensitized solar cells: Scale up and current–voltage characterization, Sol. Energy Mater. Sol. Cells, 2007, 91, 1676-1680. 16.Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells, Chem. Rev., 2010, 110, 6595-6663. 17.Ooyama, Y.; Shimada, Y.; Inoue, S.; Nagano, T.; Fujikawa, Y.; Komaguchi, K.; Imae, I.; Harima, Y., New molecular design of donor-π-acceptor dyes for dye-sensitized solar cells: control of molecular orientation and arrangement on TiO2 surface, New J. Chem., 2011, 35, 111-118. 18.Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films, J. Phys. Chem. B, 1999, 103, 3110-3119. 19.Ramakrishna, G.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N., Strongly coupled Ruthenium−polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles, J. Phys. Chem. B, 2005, 109, 15445-15453. 20.Benko, G.; Kallioinen, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.; Sundstrom, V., Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states, J. Am. Chem. Soc., 2001, 124, 489-493. 21.O''Regan, B.; Moser, J.; Anderson, M.; Graetzel, M., Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation, J. Phys. Chem., 1990, 94, 8720-8726. 22.Soedergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E., Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 1994, 98, 5552-5556. 23.Ikegami, M.; Suzuki, J.; Teshima, K.; Kawaraya, M.; Miyasaka, T., Improvement in durability of flexible plastic dye-sensitized solar cell modules, Sol. Energy Mater. Sol. Cells, 2009, 93, 836-839. 24.Onoda, K.; Ngamsinlapasathian, S.; Fujieda, T.; Yoshikawa, S., The superiority of Ti plate as the substrate of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2007, 91, 1176-1181. 25.Ma, T.; Fang, X.; Akiyama, M.; Inoue, K.; Noma, H.; Abe, E., Properties of several types of novel counter electrodes for dye-sensitized solar cells, J. Electroanal. Chem., 2004, 574, 77-83. 26.Miettunen, K.; Halme, J.; Lund, P., Segmented cell design for improved factoring of aging effects in dye solar cells, J. Phys. Chem. C, 2009, 113, 10297-10302. 27.Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain, Chem. Commun., 2000, 13, 1173-1174. 28.Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Sol. Energy Mater. Sol. Cells, 2003, 80, 47-71. 29.Scheirs, J.; Gardette, J. L., Photo-oxidation and photolysis of poly (ethylene naphthalate), Polym. Degrad. Stab., 1997, 56, 339-350. 30.Zweifel, H.; Maier, R. D.; Schiller, M., Plastics Additives Handbook, Hanser Verlag, Germany, 2009. 31.Ngamsinlapasathian, S.; Sreethawong, T.; Suzuki, Y.; Yoshikawa, S., Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2006, 90, 2129-2140. 32.Park, J. H.; Jun, Y.; Yun, H. G.; Lee, S. Y.; Kang, M. G., Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate, J. Electrochem. Soc., 2008, 155, F145-F149. 33.Miettunen, K.; Ruan, X.; Saukkonen, T.; Halme, J.; Toivola, M.; Guangsheng, H.; Lund, P., Stability of dye solar cells with photoelectrode on metal substrates. J. Electrochem. Soc., 2010, 157, B814-B819. 34.Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun., 2006, 20, 4004-4006. 35.Lee, C. H.; Chiu, W. H.; Lee, K. M.; Hsieh, W. F.; Wu, J. M., Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates, J. Mater. Chem., 2011, 21, 5114-5119. 36.Yun, H. G.; Bae, B. S.; Kang, M. G., A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cell, Adv. Energy Mater., 2011, 1, 337-342. 37.An, J.; Guo, W.; Ma, T., Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells based on a Ti substrate with TiO2 nanoforest underlayer, Small, 2012, 8, 3427-3431. 38.Li, L. L.; Tsai, C. Y.; Wu, H. P.; Chen, C. C.; Diau, E. W. G., Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells, J. Mater. Chem., 2010, 20, 2753-2819. 39.Chen, C. C.; Chung, H. W.; Chen, C. H.; Lu, H. P.; Lan, C. M.; Chen, S. F.; Luo, L.; Hung, C. S.; Diau, E. W. G., Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells, J. Phys. Chem. C, 2008, 112, 19151-19157. 40.Hu, A.; Li, H.; Jia, Z.; Xia, Z., TiO2 nanorods branched on fast-synthesized large clearance TiO2 nanotube arrays for dye-sensitized solar cells, J. Solid State Chem., 2011, 184, 2936-2940. 41.Alivov, Y.; Fan, Z. Y., Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles, Appl. Phys. Lett., 2009, 95, 063504. 42.Chen, J. G.; Chen, C. Y.; Wu, C. G.; Lin, C. Y.; Lai, Y. H.; Wang, C. C.; Chen, H. W.; Vittal, R.; Ho, K. C., An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays, J. Mater. Chem., 2010, 20, 7201-7207. 43.Kim, D.; Ghicov, A.; Albu, S. P.; Schmuki, P., Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc., 2008, 130, 16454-16455. 44.Zheng, Q.; Kang, H.; Yun, J.; Lee, J.; Park, J. H.; Baik, S., Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells, ACS Nano, 2011, 5, 5088-5093. 45.Wang, G.; Lin, Y., Novel counter electrodes based on NiP-plated glass and Ti plate substrate for dye-sensitized solar cells, J. Mater. Sci., 2007, 42, 5281-5285. 46.Huang, C. Y.; Hsu, Y. C.; Chen, J. G.; Suryanarayanan, V.; Lee, K. M.; Ho, K. C., The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 2006, 90, 2391-2397. 47.Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M., Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Lett. 2005, 5, 1789-1792. 48.Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Walsh, F. C.; Ralph T. R., Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials[dagger], Analyst., 1998, 123, 1923-1929. 49.Lin, C. Y.; Lai, Y. H.; Chen, H. W.; Chen, J. G.; Kung, C. W.; Vittal, R.; Ho, K. C., Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode, Energy Environ. Sci., 2011, 4, 3448-3455. 50.Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO nanostructures for dye-sensitized solar cells, Adv. Mater., 2009, 21, 4087-4108. 51.Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar‐zadeh, K., Nanostructured Tungsten oxide–properties, synthesis, and applications, Adv. Funct. Mater., 2011, 21, 2175-2196. 52.Zheng, H.; Tachibana, Y.; Kalantar-zadeh, K., Dye-sensitized solar cells based on WO3, Langmuir, 2010, 26, 19148-19152. 53.Rho, C.; Suh, J. S., Filling TiO2 nanoparticles in the channels of TiO2 nanotube membranes to enhance the efficiency of dye-sensitized solar cells, Chem. Phys. Lett., 2011, 513, 108-111. 54.Le Viet, A.; Jose, R.; Reddy, M.; Chowdari, B.; Ramakrishna, S., Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph, J. Phys. Chem. C, 2010, 114, 21795-21800. 55.Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., 1988, 110, 1216-1220. 56.Koelsch, M.; Cassaignon, S.; Ta Thanh Minh, C.; Guillemoles, J. F.; Jolivet, J. P., Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium, Thin Solid Films, 2004, 451-452, 86-92. 57.Park, N. G.; Van de Lagemaat, J.; Frank, A., Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B, 2000, 104, 8989-8994. 58.Kay, A.; Gratzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells, 1996, 44, 99-117. 59.Galoppini, E., Linkers for anchoring sensitizers to semiconductor nanoparticles, Coordin. Chem. Rev., 2004, 248, 1283-1297. 60.Sheka, E. F.; Zayets, V. A., On the donor-acceptor interaction and electron transfer at the titanium oxide-organic dye interface, Phys. Solid State, 2007, 49, 2004-2009. 61.Du, L.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M., Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO2 nanoparticle films, J. Phys. Chem. C, 2010, 114, 8135-8143. 62.Goncalves, L. M.; De Zea Bermudez, V.; Ribeiro, H. A.; Mendes, A. M., Dye-sensitized solar cells: A safe bet for the future, Energy Environ. Sci., 2008, 1, 655-667. 63.Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc Le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano, 2009, 3, 3103-3109. 64.Ning, Z.; Fu, Y.; Tian, H., Improvement of dye-sensitized solar cells: What we know and what we need to know, Energy Environ. Sci., 2010, 3, 1170-1181. 65.Gratzel, M., Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett., 2005, 34, 8-13. 66.Pavasupree, S.; Ngamsinlapasathian, S.; Suzuki, Y.; Yoshikawa, S., Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2, J. Nanosci. Nanotechnol., 2006, 6, 3685-3692. 67.Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells, Nat. Mater., 2005, 4, 455-459. 68.Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett., 2006, 7, 69-74. 69.Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 2006, 6, 215-218. 70.Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 2006, 90, 2011-2075. 71.Wang, H.; Yip, C. T.; Cheung, K. Y.; Djurišić, A. B.; Xie, M. H.; Leung, Y. H.; Chan, W. K., Titania nanotube array-based photovoltaic cells, Appl. Phys. Lett., 2006, 89, 023508. 72.Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnol., 2007, 18, 065707. 73.Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A., TiO2 nanotube arrays of 1000 mm m length by anodization of titanium foil: Phenol red diffusion, J. Phys. Chem. C, 2007, 111, 14992-14997. 74.Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 mm m in length, J. Phys. Chem. B, 2006, 110, 16179-16184. 75.Li, L. L.; Chen, Y. J.; Wu, H. P.; Wang, N. S.; Diau, E. W. G., Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells, Energy Environ. Sci., 2011, 4, 3420-3425. 76.Lin, C. J.; Yu, W. Y.; Chien, S. H., Rough conical-shaped TiO2 nanotube arrays for flexible backilluminated dye-sensitized solar cells, Appl. Phys. Lett., 2008, 93, 1073-1077. 77.Chen, Q. W.; Xu, D. S., Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells, J. Phys. Chem. C, 2009, 113, 6310-6314. 78.Rani, S.; Roy, S. C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Kim, S.; Yoriya, S.; Latempa, T. J.; Grimes, C. A., Synthesis and applications of electrochemically self-assembled titania nanotube arrays, Phys. Chem. Chem. Phys., 2010, 12, 2780-2800. 79.Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length, J. Phys. Chem. B, 2006, 110, 16179-16184. 80.Mor, G.; Varghese, O. K.; Paulose, M.; Mukherjee, N.; Grimes, C., Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res., 2003, 18, 2588-2593. 81.Parkhutik, V.; Shershulsky, V., Theoretical modelling of porous oxide growth on aluminium, Journal of Physics D: Appl. Phys., 1992, 25, 1258. 82.Wang, Q.; Ito, S.; Gratzel, M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Bessho, T.; Imai, H., Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B, 2006, 110, 25210-25221. 83.Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells, J. Phys. Chem. B, 2003, 107, 8607-8611. 84.Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M., Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Lett., 2005, 5, 1789-1792. 85.Charoensirithavorn, P.; Ogomi, Y.; Sagawa, T.; Hayase, S.; Yoshikawaa, S., Improvement of dye-sensitized solar cell through TiCl4-treated TiO2 nanotube arrays, J. Electrochem. Soc., 2010, 157, B354-B356. 86.Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P., Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells, Coordin. Chem. Rev., 2011, 255, 2602-2621. 87.Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J., Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4''-dicarboxy-2,2''-bipyridine)2(NCS)2] by infrared transient absorption, J. Phys. Chem. B, 1998, 102, 6455-6458. 88.Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A swift dye uptake procedure for dye sensitized solar cells, Chem. Commun., 2003, 12, 1456-1457. 89.Ryan M., P., Progress in ruthenium complexes for dye sensitised solar cells, Platinum Metals Rev., 2009, 53, 216-218. 90.Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2004, 164, 3-14. 91.Lee, C. Y.; Hupp, J. T., Dye Sensitized Solar Cells: TiO2 Sensitization with a Bodipy-Porphyrin Antenna System, Langmuir, 2010, 26, 3760-3765. 92.Imahori, H.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H., Effects of meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties, J. Phys. Chem. C, 2010, 114, 10656-10665. 93.Li, C.; Liu, Z.; Schoneboom, J.; Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Herrmann, A.; Mullen, K., Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance, J. Mater. Chem. 2009, 19, 5405. 94.Jin, Y.; Hua, J.; Wu, W.; Ma, X.; Meng, F., Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells, Synthetic Metals, 2008, 158, 64-71. 95.Wu, W.; Hua, J.; Jin, Y.; Zhan, W.; Tian, H., Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells, Photochem. Photobiol. Sci., 2008, 7, 63. 96.Ma, X.; Hua, J.; Wu, W.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H., A high-efficiency cyanine dye for dye-sensitized solar cells, Tetrahedron, 2008, 64, 345-350. 97.Hattori, S.; Hasobe, T.; Ohkubo, K.; Urano, Y.; Umezawa, N.; Nagano, T.; Wada, Y.; Yanagida, S.; Fukuzumi, S., Enhanced energy and quantum efficiencies of a nanocrystalline photoelectrochemical cell sensitized with a donor-acceptor dyad derived from fluorescein, J. Phys. Chem. B, 2004, 108, 15200-15205. 98.Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F., Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films, J. Phys. Chem. C, 2008, 112, 13057-13061. 99.Sayama, K.; Hara, K.; Sugihara, H.; Arakawa, H.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain, Chem.Commun., 2000, 13, 1173-1174. 100.Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Sol. Energy Mater. Sol. Cells, 2003, 80, 47-71. 101.Hara, K.; Sayama, K.; Arakawa, H.; Ohga, Y.; Shinpo, A.; Suga, S., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 2001, 6, 569-570. 102.Wang, Z. S.; Cui, Y.; Danoh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid, J. Phys. Chem. C, 2007, 111, 7224-7230. 103.Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B. W., Efficient electron injection due to a special adsorbing group combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes, J. Mater. Chem., 2005, 15, 1654. 104.Wang, Z. S.; Li, F. Y.; Huang, C. H., Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate, Chem. Commun., 2000, 20, 2063-2064. 105.Howie, W. H.; Claeyssens, F.; Miura, H.; Peter, L. M., Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes, J. Am. Chem. Soc., 2008, 130, 1367-1375. 106.Guo, F.; Qu, S.; Wu, W.; Li, J.; Ying, W.; Hua, J., Synthesis and photovoltaic performance of new diketopyrrolopyrrole (DPP) dyes for dye-sensitized solar cells, Synthetic Metals, 2010, 160, 1767-1773. 107.Qu, S.; Wu, W.; Hua, J.; Kong, C.; Long, Y.; Tian, H., New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells, J. Phys. Chem. C, 2010, 114, 1343-1349. 108.Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks, Chem. Mater., 2010, 22, 1915-1925. 109.Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2001, 70, 85-101. 110.Feldt, S. M.; Wang, G.; Boschloo, G.; Hagfeldt, A., Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples, J. Phys. Chem. C, 2011, 115, 21500-21507. 111.Tian, H.; Sun, L., Iodine-free redox couples for dye-sensitized solar cells, J. Mater. Chem., 2011, 21, 10592. 112.Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L., Liquid electrolytes for dye-sensitized solar cells, Dalton Transactions, 2011, 40, 10289. 113.Hamann, T. W.; Farha, O. K.; Hupp, J. T., Outer-sphere redox couples as shuttles in dye-sensitized solar cells. performance enhancement based on photoelectrode modification via atomic layer deposition, J. Phys. Chem. C, 2008, 112, 19756-19764. 114.Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S., Blue copper model complexes with distorted tetragonal geometry acting as effective electron transfer mediators in dye-sensitized solar cells, J. Am. Chem. Soc., 2005, 127, 9648-9654. 115.Li, T. C.; Spokoyny, A. M.; She, C.; Farha, O. K.; Mirkin, C. A.; Marks, T. J.; Hupp, J. T., Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells, J. Am. Chem. Soc., 2010, 132, 4580-4582. 116.Bai, Y.; Yu, Q.; Cai, N.; Wang, Y.; Zhang, M.; Wang, P., High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle, Chem. Commun., 2011, 47, 4376. 117.Wang, Z. S.; Sayama, K.; Sugihara, H., Efficient eosin Y dye-sensitized solar cell containing Br-/Br3- electrolyte, J. Phys. Chem. B, 2005, 109, 22449-22455. 118.Bergeron, B. V.; Marton, A.; Oskam, G.; Meyer, G. J., Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators, J. Phys. Chem. B, 2005, 109, 937-943. 119.Oskam, G.; Bergeron, B. V.; Meyer, G. J.; Searson, P. C., Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B, 2001, 105, 6867-6873. 120.Murakami, T. N.; Gratzel, M., Counter electrodes for DSC: Application of functional materials as catalysts, Inorg. Chim. Acta, 2008, 361, 572-580. 121.Macagno, V.; Giordano, M.; Arvia, A., Kinetics and mechanisms of electrochemical reactions on platinum with solutions of iodine-sodium iodide in acetonitrile, Electrochim. Acta, 1969, 14, 335-357. 122.Fang, X.; Ma, T.; Guan, G.; Akiyama, M.; Kida, T.; Abe, E., Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal. Chem., 2004, 570, 257-263. 123.Khelashvili, G.; Behrens, S.; Weidenthaler, C.; Vetter, C.; Hinsch, A.; Kern, R.; Skupien, K.; Dinjus, E.; Bonnemann, H., Catalytic platinum layers for dye solar cells: A comparative study, Thin Solid Films, 2006, 511, 342-348. 124.Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.; Murata, K., High performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2003, 79, 459-469. 125.Yohannes, T.; Inganas, O., Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte, Sol. Energy Mater. Sol. Cells, 1998, 51, 193-202. 126.Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2004, 164, 153-157. 127.Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S., Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells, Chem. Lett., 2002, 10, 1060-1061. 128.Ahmad, S.; Yum, J. H.; Xianxi, Z.; Gratzel, M.; Butt, H. J.; Nazeeruddin, M. K., Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids, J. Mater. Chem., 2010, 20, 1654. 129.Ahmad, S.; Yum, J. H.; Butt, H. J.; Nazeeruddin, M. K.; Gratzel, M., Efficient platinum-free counter electrodes for dye-sensitized solar cell applications, ChemPhysChem, 2010, 11, 2814-2819. 130.Heywang, G.; Jonas, F., Poly(alkylenedioxythiophene)s-new, very stable conducting polymers, Adv. Mater., 1992, 4, 116-118. 131.Wu, J.; Li, Q.; Fan, L.; Lan, Z.; Li, P.; Lin, J.; Hao, S., High performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, J. Power Sources, 2008, 181, 172-176.
132.Li, Z.; Ye, B.; Hu, X.; Ma, X.; Zhang, X.; Deng, Y., Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell, Electrochemistry Communications, 2009, 11, 1768-1771. 133.Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J. I.; Murata, K., High performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2003, 79, 459-469. 134.Hino, T.; Ogawa, Y.; Kuramoto, N., Dye-sensitized solar cell with single-walled carbon nanotube thin film prepared by an electrolytic micelle disruption method as the counterelectrode, Fuller. Nanotubes Carbon Nanostruct., 2006, 14, 607-619. 135.Huang, Z.; Liu, X.; Li, K.; Li, D.; Luo, Y.; Li, H.; Song, W.; Chen, L.; Meng, Q., Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2007, 9, 596-598. 136.Chen, J.; Li, K.; Luo, Y.; Guo, X.; Li, D.; Deng, M.; Huang, S.; Meng, Q., A flexible carbon counter electrode for dye-sensitized solar cells, Carbon, 2009, 47, 2704-2708. 137.Wang, X.; Zhi, L.; Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, 8, 323-327. 138.Cai, F.; Chen, J.; Xu, R., Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells, Chem. Lett., 2006, 35, 1266-1267. 139.Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R., Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Adv. Mater., 2003, 15, 855-879. 140.Zhang, J.; Li, X.; Guo, W.; Hreid, T.; Hou, J.; Su, H.; Yuan, Z., Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance, Electrochim. Acta, 2011, 56, 3147-3152. 141.Lee, K. M.; Chiu, W. H.; Wei, H. Y.; Hu, C. W.; Suryanarayanan, V.; Hsieh, W. F.; Ho, K. C., Effects of mesoscopic poly (3, 4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells, Thin Solid Films, 2010, 518, 1716-1721. 142.Lee, K. S.; Lee, Y.; Lee, J. Y.; Ahn, J. H.; Park, J. H., Flexible and platinum-free dye-sensitized solar cells with conducting polymer coated graphene counter electrodes, ChemSusChem, 2012, 5, 379-382. 143.Pringle, J. M.; Armel, V.; MacFarlane, D. R., Electrodeposited PEDOT on plastic cathodes for dye-sensitized solar cells, Chem. Commun., 2010, 46, 5367-5369. 144.Trevisan, R.; Dobbelin, M.; Boix, P. P.; Barea, E. M.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J., PEDOT nanotube arrays as high performing counter electrodes for dye sensitized solar cells. Study of the interactions among electrolytes and counter electrodes, Adv. Energy Mater., 2011, 1, 781-784. 145.Lee, T. H.; Do, K.; Lee, Y. W.; Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S., High performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode, J. Mater. Chem., 2012, 22, 21624-21629. 146.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 1993, 115, 6382-6390. 147.Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F., Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films, J. Phys. Chem. C, 2008, 112, 13057-13061. 148.O''Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J., Influence of the TiCl4 treatment on nanocrystalline TiO2 Films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit, J. Phys. Chem. C, 2007, 111, 14001-14010. 149.Graetzel, M., Mesoscopic solar cells for electricity and hydrogen production from sunlight, ChemInform, 2005, 34, 8-13. 150.Shockley, W.; Queisser, H. J., Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., 1961, 32, 510-519. 151.Zhang, Z. W.; Pan, D. Y.; Feng, J. J.; Guo, L.; Peng, L. W.; Xi, C.; Li, J. H.; Li, Z.; Wu, M. H.; Ren, Z. Y., Enhanced photoelectrocatalytic activity in TiO2 nanotube arrays modified with TiO2 nanoparticles, Mater. Lett., 2012, 66, 54-56. 152.Kang, T. S.; Moon, S. H.; Kim, K. J., Enhanced photocurrent-voltage characteristics of Ru(II)-dye sensitized TiO2 solar cells with TiO2-WO3 buffer layers prepared by a sol-gel method, J. Electrochem. Soc., 2002, 149, E155-E158. 153.Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M., Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells, Chem. Commun., 2005, 34, 4351-4353. 154.Hamann, T. W.; Farha, O. K.; Hupp, J. T., Outer sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition, J. Phys. Chem. C, 2008, 112, 19756-19764. 155.Ahmad, S.; Yum, J. H.; Xianxi, Z.; Gratzel, M.; Butt, H. J.; Nazeeruddin, M. K., Dye-sensitized solar cells based on poly (3, 4-ethylenedioxythiophene) counter electrode derived from ionic liquids, J. Mater. Chem., 2010, 20, 1654-1658. 156.Lin, L. Y.; Lee, C. P.; Vittal, R.; Ho, K. C., Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode, J. Power Sources, 2010, 195, 4344-4349. 157.Han, L.; Koide, N.; Chiba, Y.; Mitate, T., Modeling of an equivalent circuit for dye-sensitized solar cells, Appl. Phys. Lett, 2004, 84, 2433-2435. 158.Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Mitate, T., Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance, C. R. Chimie, 2006, 9, 645-651. 159.Kim, G. O.; Ryu, K. S., Dynamic response of charge transfer and recombination at various electrodes in dye-sensitized solar cells investigated using intensity modulated photocurrent and photovoltage spectroscopy, B. Korean Chem. Soc., 2012, 33, 469-472. 160.Wu, M.; Lin, X.; Wang, T.; Qiu, J.; Ma, T., Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes, Energy Environ. Sci., 2011, 4, 2308-2315. 161.John, S. E.; Mohapatra, S. K.; Misra, M., Double-wall anodic titania nanotube arrays for water photooxidation, Langmuir, 2009, 25, 8240-8247. 162.Wu, H.; Zhang, Z., High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes, Int. J. Hydrogen Energy, 2011, 36, 13481-13487. 163.Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P., Formation of double-walled TiO2 nanotubes and robust anatase membranes, Adv. Mater., 2008, 20, 4135-4139. 164.Shankar, K.; Mor, G. K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells, J. Non-Cryst. Solids, 2008, 354, 2767-2771. 165.Jaroenworaluck, A.; Regonini, D.; Bowen, C.; Stevens, R.; Allsopp, D., Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J. Mater. Sci., 2007, 42, 6729-6734. 166.Lohrengel, M. M., Thin anodic oxide layers on aluminium and other valve metals: high field regime, Mater. Sci. Eng., R, 1993, 11, 243-294. 167.J. Frank, A.; Kopidakis, N.; Lagemaat, J. v. d., Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coordin Chem Rev, 2004, 248, 1165-1179. 168.Barnes, P. R. F.; O’Regan, B. C., Electron recombination kinetics and the analysis of collection efficiency and diffusion length measurements in dye-sensitized solar cells, J. Phys. Chem. C, 2010, 114, 19134-19140. 169.Barnes, P. R. F.; Anderson, A. Y.; Koops, S. E.; Durrant, J. R.; O’Regan, B. C., Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements. J. Phys. Chem. C, 2008, 113, 1126-1136. 170.Kang, M. G.; Park, N. G.; Ryu, K. S.; Chang, S. H.; Kim, K. J., A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Sol. Energy Mater. Sol. Cells, 2006, 90, 574-581.
171.Jun, Y.; Kim, J.; Kang, M. G., A study of stainless steel-based dye-sensitized solar cells and modules, Sol. Energy Mater. Sol. Cells, 2007, 91, 779-784. 172.Yun, H. G.; Park, J. H.; Bae, B. S.; Kang, M. G., Dye-sensitized solar cells with TiO2 nanoparticles on TiO2 nanotube-grown Ti substrates, J. Mater. Chem., 2011, 21, 3558-3561. 173.Yip, C. T.; Mak, C. S. K.; Djurišić, A. B.; Hsu, Y. F.; Chan, W. K., Dye-sensitized solar cells based on TiO2 nanotube/porous layer mixed morphology, Appl. Phys. A, 2008, 92, 589-593. 174.Radovic-Hrapovic, Z.; Jerkiewicz, G., The temperature dependence of the cyclic-voltammetry response for the Pt (110) electrode in aqueous H2SO4 solution, J. Electroanal. Chem., 2001, 499, 61-66. 175.Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Walsh, F. C.; Ralph, T. R., Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials, Analyst, 1998, 123, 1923-1929. 176.Van de Lagemaat, J.; Frank, A. J., Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 Films: transient photocurrent and random-walk modeling studies, J. Phys. Chem. B, 2001, 105, 11194-11205. 177.Dunn, H. K.; Peter, L. M., How efficient is electron collection in dye-sensitized solar cells? Comparison of different dynamic methods for the determination of the electron diffusion length, J. Phys. Chem. C, 2009, 113, 4726-4731. 178.Liu, R.; Lee, S. B., MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc., 2008, 130, 2942-2943. 179.Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T., Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system, Sol. Energy Mater. Sol Cells, 2006, 90, 341-351. 180.Muto, T.; Ikegami, M.; Kobayashi, K.; Miyasaka, T., Conductive polymer-based mesoscopic counterelectrodes for plastic dye-sensitized solar cells, Chem. Lett., 2007, 36, 804-805. 181.Varghese, O. K.; Gong, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res., 2003, 18, 156-165. 182.Lin, R. Y. Y.; Yen, Y. S.; Cheng, Y. T.; Lee, C. P.; Hsu, Y. C.; Chou, H. H.; Hsu, C. Y.; Chen, Y. C.; Lin, J. T.; Ho, K. C.; Tsai, C., Dihydrophenanthrene-based metal-free dyes for highly efficient cosensitized solar cells, Org. Lett, 2012, 14, 3612-3615. 183.Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta, 2001, 46, 3457-3466. 184.Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T., A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells, Chem. Commun., 2011, 47, 4535-4537.
|